Когда напряжение равно нулю между точками

ОПРЕДЕЛЕНИЕ НАПРЯЖЕНИЯ МЕЖДУ ДВУМЯ ТОЧКАМИ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

Эта задача при расчете электрических цепей встречается очень часто. Пусть, например, в цепи на рис. 2.1 требуется найти напряжение между точками m и n.

Прежде всего необходимо показать на схеме или мысленно представить стрелку этого напряжения. Её направление определяется порядком следования индексов у буквы . Для напряжения она направлена отточки m к точке n. Если мы меняем местами индексы у буквы , то следует изменить и направление стрелки на схеме. При этом при расчете меняется знак полученного напряжения, так как .

Дальше записываются уравнения по второму закону Кирхгофа для любого контура, включающего в себя эту стрелку, как было сделано при расчете напряжений и . Так, для контура m31nm при обходе его по часовой стрелке

.

. (7.1)

При соответствующем навыке последняя формула может быть записана сразу, без составления уравнения второго закона Кирхгофа.

В указанном контуре напряжение складывается из трех напряжений:

. (7.2)

Порядок индексов у букв U соответствует порядку, в котором мы проходим участок электрической цепи, идя от точки m к точке n по элементам , и .

Теперь находим значение каждого слагаемого в последнем уравнении.

Величина , определяющая напряжение между точками m и 3, представляет собой падение напряжения на сопротивлении , которое мы должны взять со знаком минус, так как от точки m к точке 3 мы идем против тока :

.

.

Здесь в правой части уравнения стоит плюс, так как мысленная стрелка напряжения и ток направлены в одну сторону.

Третье слагаемое представляет собой напряжение на зажимах источника. Если внутреннее сопротивление последнего равно нулю, то это напряжение по величине равно ЭДС, а знак его зависит от взаимного направления стрелок напряжения и ЭДС (рис. 7.1).

Читайте также:  Датчик напряжения lv 100 1000 sp30

Рис. 7.1. Напряжение на зажимах источника

При указанной на схеме полярности зажимов источника потенциал точки b выше потенциала точки a на величину ЭДС:

.

Поэтому при одинаковых направлениях стрелок и (рис. 7.1, а)

.

Если направления стрелок и противоположны друг другу
(рис. 7.1, б), то

.

С учетом сказанного напряжение на участке 1n (см. рис. 2.1) равно

.

Подставляя найденные значения напряжений на участках в формулу (7.2), приходим к выражению (7.1).

То же самое напряжение, определяемое по участку m2n, будет равно

.

Разумеется, вычисление одного и того же напряжения по двум различным формулам должно привести к одинаковым результатам.

ПОСТРОЕНИЕ ГРАФИКОВ

Общие требования к оформлению графиков. Зависимость мощности от тока

Правила построения графиков рассмотрим на примере зависимости мощности Р1,выделяющейся в сопротивлении первой ветви, от тока I1 в этой ветви. Эта зависимость определяется уравнением баланса мощностей в схеме рис. 6.1, в:

.

Так как , то

. (8.1)

Это – уравнение параболы со смещенной вершиной и направленными вниз ветвями (рис. 8.1).

Значения тока, при которых парабола пересекает горизонтальную ось, находятся из уравнения

и .

По смыслу – это ток, протекающий в схеме рис. 6.1, в при закороченном сопротивлении . При токе, равном половине этого значения, мощность максимальна:

.

Предположим, что параметры цепи на рис. 6.1, в имеют следующие численные значения:

= 72,4 В; = 130 В; = 43,6 Ом.

Прежде всего находим максимальные значения абсциссы и ординаты, которые будут определять размеры графика. В нашем примере – это значения и :

;

.

Исходя из этих величин и предполагаемых размеров графика, выбираем масштаб, который указываем на каждой оси графика в виде равномерной шкалы.

В одной единице длины (сантиметре, миллиметре) может содержаться m × 10 n именованных единиц. Здесь n – целое число, положительное или отрицательное, а для mрекомендуются числа 1, 2, 5.

Читайте также:  Меры для предотвращения ошибочной подачи напряжения

Положительные значения величин откладываются вправо по оси абсцисс и вверх по оси ординат.

В конце каждой оси ставится буквенное обозначение откладываемой величины и через запятую – ее единица измерения.

Если график строится на белой (нелинованной) бумаге, то чертится масштабная сетка.

Данные для построения графика рассчитываем по формуле (8.1) и сводим их в таблицу (табл. 8.1).

Данные для построения графика

, А 0 0,2 0,4 0,5 0,6 0,66 0,8 0,9 1 1,2 1,32
, Вт 0 9,78 16,1 17,9 18,9 19 18,2 16,5 14 6,34 0

Абсциссы точек, выбираемых для построения графика, желательно располагать по оси равномерно. Но вблизи характерных областей кривой (в нашем случае у вершины параболы) точки можно взять чаще. В таблицу внесены также значения максимальной мощности и тока, которому эта мощность соответствует. При построении графика числа из таблицы на осях не показываются (рис. 8.2).

8.2. Зависимость тока от сопротивления

Зависимость тока в первой ветви от сопротивления этой ветви строим по уравнению (6.2), которое при выбранных значениях , и принимает вид:

.

Подставляя сюда различные значения сопротивления , приходим к результатам, представленным на рис. 8.3.

, Ом , А
0 1,32
10 1,07
20 0,91
30 0,78
40 0,69
50 0,62
60 0,56
70 0,51
80 0,47

Рис. 8.3. Зависимость тока от сопротивления

Дата добавления: 2019-07-17 ; просмотров: 1714 ; Мы поможем в написании вашей работы!

Источник

Потенциал. Разность потенциалов.

Разность потенциалов (напряжение) между 2-мя точками поля равняется отношению работы поля по перемещению заряда из начальной точки в конечную к этому заряду:

,

Так как работа по перемещению заряда в потенциальном поле не зависит от формы траектории, то, зная напряжение между двумя точками, мы определим работу, которая совершается полем по перемещению единичного заряда.

Читайте также:  Испытание изоляции повышенным напряжением расценка в смете

Если есть несколько точечных зарядов, значит, потенциал поля в некоторой точке пространс­тва определяется как алгебраическая сумма потенциалов электрических полей каждого заряда в данной точке:

.

Эквипотенциальной поверхностью, или поверхностью равного потенциала, является поверхность, для любых точек которой разность потенциалов равна нулю. Это означяет, что работа по перемещению заряда по такой поверхности равна нулю, следовательно, линии напряженности электрического поля перпендикулярны эквипотенциальным поверхностям. Эквипотенциальные поверхности однородного поля представляют собой плоскости, а точечного заряда — концентрические сферы.

Вектор напряженности (как и сила ) перпендикулярен эквипотенциальным поверхнос­тям. Эквипотенциальной является поверхность любого проводника в электростатическом поле, так как силовые линии перпендикулярны поверхности проводника. Внутри проводника разность потенциалов между любыми его точками равна нулю.

Напряжение и напряженность однородного поля .

В однородном электрическом поле напряженность E в каждой точке одинакова, и работа A по перемещению заряда q параллельно на расстояние d между двумя точками с потенциалами φ1, и φ2 равна:

,

.

Т.о., напряженность поля пропорциональна разности потенциалов и направлена в сторону уменьшения потенциала. Поэтому положительный заряд будет двигаться в сторону уменьшения потенциала, а отрицательный — в сторону его увеличения.

Единицей напряжения (разности потенциалов) является вольт. Исходя из формулы , , разность потенциалов между двумя точками равна одному вольту, если при перемещении заряда в 1 Кл между этими точками поле совершает работу в 1 Дж.

Источник

Оцените статью
Adblock
detector