Молниезащита лэп различных классов напряжения

Устройство молниезащиты на подстанциях

Система молниезащиты подстанции играет важную роль в работе сооружения, ввиду того, что от подстанции зависят многие организации, а также люди их составляющие. Основой служат две части: внутреннее и внешнее молниеустройство.

В редких, исключительных случаях, система предотвращения ударов молний может состоять из единственной части. Второй случай возможен, когда подстанция небольшого габарита имеет встроенный тип, к примеру, внутрицеховой — тогда применяется исключительно защита внутреннего типа, предупреждающая импульсные перенапряжения, ввиду того, что внешнее устройство защиты обеспечивает всё сооружение, где находится данная подстанция. Важным, а потому обязательным к исполнению требованием является обеспечение защитного устройства для ЭП.

Молниезащита подстанций и воздушных линий электропередач

Грозовые удары требуют отнести к молниезащите воздушных линий электропередачи с особым вниманием. Расстояние между заземляющими элементами для мест с количеством угроз 40 в год — двести метров, для мест, где грозы случаются чаще — более 40, конструкция заземления ставится каждые сто метров. Заземление обладает показателем сопротивления в 30 Ом.

В один сезон главенствования грозовой погоды, любые 30 км линий электрической передачи берут на себя молниевый удар — это важный фактор при составлении плана молниезащиты линий.

При каждом воздействии молнии на энергооборудование происходит выработка ресурса, а потому серьезный процент старения оборудования. Потери экономического плана от данного опосредованного воздействия молнии на энергосистемы весомо превосходят общую стоимость молниеохранной системы.

Предохраняющие устройства подстанции от попадания молнии производятся по расчетам, с учетом технических особенностей громозащиты зданий промышленности — она имеет существенную разницу от таковой в защите жилых домов. При возникновении необходимости монтажа отвода молний на портале, обмотки низкого напряжение нужно защищать с помощью разрядника или ограничителя напряжений.

Металлические конструкции порталов и мачт после установки на них молниевых приемников, эксплуатируются как токоотводящие элементы, осуществляющие соединение молниеприемников и заземляющей конструкции.

Молниезащита трансформаторной подстанции

В случае монтажа стержневой молниезащиты для трансформаторной подстанции, по ее углам ставятся стержни — молниеприемники, которые соединяются с контуром заземляющего устройства токоотводом.

Высоту и длину токоотводящих элементов необходимо рассчитывать исходя из габаритов подстанции. Находящиеся неподалеку объекта, молниезащищенные, высокие сооружения могут покрывать подстанцию. Молниеотводные спуски идут к заземлителям, проводятся по верху сооружения и его стенам, на расстоянии как можно более удаленном от токоведущих частей установки. Иной раз бывает достаточно монтажа одного молниеотвода на самое высокое здание или же заводскую трубу

Молниезащита кабельных эстакад

Организация молниезащиты кабельной эстакады имеет зависимость от некоторых условий — вхождения либо нет, в зону действия отдельно находящихся сооружений, линий электропередач, громоотводов.

Расположенный неподалеку молниеотвод сделает мероприятие монтажа данной системы нецелесообразной, поскольку сам защищает эстакаду.

Следуя требованиям ПУЭ, конкретно пункту документа 2.3.72, а также правилам СП 4.13130.2013 пункта 6.5.60, эстакады обязательно должны оборудоваться молниезащитой. Молниезащита эстакады осуществляется либо установкой дополнительных токоприемных элементов — шпилек, следуя всей длине трассы, либо постройки специальной металлической кровли с определенной толщиной металла, определяющей уровень защиты.

Требования к молниезащите линий электропередач

Требования к молниезащите линий электропередачи излагаются в гос.нормативных документах:

  • ГОСТ Р 50571.19-2000. Содержит требования по обеспечению реализации безопасной установки, защиты от излишнего электронапряжения, защита от коммутационных и грозовых перенапряжений
  • ГОСТ Р 50571.20-2000. Содержит информацию по обеспечению безопасности, защиту от сверхперенапряжений и защиту устройств от перенапряжения, вызванного воздействиями электромагнитного поля.
  • ГОСТ 12.1.030-81. В этом документе информация об особенностях стандартов безопасности трудовой деятельности, электробезопасности; данные о защитном заземлении и занулении
  • РД 34.21.122-87. Излагает устройство громозащиты сооружений, зданий разного масштаба и типа.
  • РД 143-34.3-35.125-99. Содержит данные по защите электросетей от 6-ти до 1150-ти кВ от грозовых и внутренних сверхнапряжений.

Источник

Молниезащита воздушных линий напряжением до 1000 В

Защита ВЛ до 1000 В от прямых ударов молнии не требуется. Однако сами линии, будучи соединены с электрооборудованием внутри зданий, могут служить каналом для заноса высоких потенциалов при прямых ударах молнии в линию, а также наводимых в проводах вследствие электростатической и электромагнитной индукции при близких грозовых разрядах.

Перенапряжения могут достигать сотен тысяч вольт и вызывают пробой изоляции проводов и электрооборудования и пожары. Они опасны для жизни людей, находящихся в зданиях и сооружениях, которые питаются электроэнергией по воздушной линии.

Подводка воздушных линий наружного освещения, силовой сети напряжением до 1000 В, радиотрансляционных линий и сигнализации к прожекторным мачтам, дымовым трубам, градирням и другим высокогабаритным зданиям и сооружениям не допускается. Здесь следует использовать кабели.

Для защиты от грозовых перенапряжений воздушные линии в населенной местности с одно- и двухэтажной застройкой, не экранированные дымовыми трубами котельных, высокими деревьями, зданиями и т. п., должны иметь заземляющие устройства. Сопротивление заземлений — не более 30 Ом. Расстояния между заземлениями для районов со среднегодовым числом часов гроз до 40 принимают 200 м.

Читайте также:  Как снять напряжение с фанеры

Для районов, где среднегодовое количество часов гроз более 40, заземления устраивают через каждые 100 м. Кроме того, заземляющие устройства выполняют:

• на опорах — с ответвлениями к вводам в общественные здания, и помещения, где может находиться большое количество людей (школы, клубы, ясли, больницы, столовые, спальные корпуса пионерлагерей и т. п.) или представляющие большую хозяйственную ценность (животноводческие помещения, склады, мастерские и пр.);

• на конечных опорах линий, имеющих ответвления к вводам в здания любого назначения. К указанным заземляющим устройствам необходимо присоединить крюки и штыри деревянных и железобетонных опор, а также арматуру последних.

И в том и в другом случае на опорах рекомендуется также устанавливать вентильные разрядники.

В сетях с заземленной нейтралью для заземления от атмосферных перенапряжений следует использовать заземляющие устройства повторных заземлений нулевого провода.

Заземление крюков и штырей

В сетях с заземленной нейтралью крюки и штыри фазных проводов на железобетонных опорах, а также арматура этих опор должны быть присоединены к заземленному нулевому проводу (см. рис. 1).

Это делается для того, чтобы возникшие при грозовых разрядах перенапряжения вызвали перекрытие с провода на крюк и заряд ушел в землю по нулевому проводу через ближайшие защитные повторные заземления нулевого провода. При этом величина перенапряжения снижается до 30—50 кВ, уменьшается опасность пробоев и перекрытий изоляции в зданиях, присоединенных к воздушной линии.

Крюки и штыри на деревянных опорах заземлять не нужно (за исключением указанных выше опор с заземлениями от перенапряжений). В сетях с изолированной нейтралью крюки и штыри фазных проводов на железобетонных опорах, а также арматура этих опор должны быть заземлены. Сопротивление заземления не более 50 Ом, Заземляющие и нулевые защитные проводники из стали должны иметь диаметр не менее 6 мм.

Рис.1. Заземление крюков ВЛ 0,4 кВ

Рис. 2. Вентильный разрядник РВН-0,5: 1 — хомут для крепления; 2 — изолятор; 3 — пружина; 4 — одиночный искровой промежуток; 5 — бумажно-бакелитовый цилиндр; 6 — диск рабочего резистора; 7 — герметизирующее резиновое кольцо

Для снижения перенапряжений в проводах воздушных линий применяют низковольтные вентильные разрядники типа РВН-0,5 отечественного производства и аналогичные импортные (например GZ а-0,66). Разрядники — очень эффективное средство снижения перенапряжений. Набегающая с линии импульсная волна перенапряжения отводится в землю, остающееся напряжение не превышает 3—3,5 кВ, что практически безопасно для электрооборудования.

Разрядник РВН-0,5 для наружной и внутренней установки (рис. 2) состоит из единичного искрового промежутка и последовательно соединенного с ним рабочего сопротивления (резистора), закрытых фарфоровой герметической покрышкой и сжатых цилиндрической пружиной. Герметизация осуществлена с помощью озоностойкого резинового кольца.

Разрядник присоединяется к фазному проводу и заземленному спуску. Защитное действие его заключается в том, что при появлении перенапряжения происходит пробой искрового промежутка, протекающий через разрядник импульсный ток вследствие нелинейной характеристики рабочего сопротивления снижает величину волны перенапряжения до безопасного для оборудования значения 3—5 кВ. Искровой промежуток подобран таким образом, что пробивается всякий раз, как только напряжение на защищаемом участке превысит допустимую величину.

Следующий за пробоем искрового промежутка разрядника ток, протекающий под действием напряжения промышленной частоты (так называемый сопровождающий ток), прерывается искровым промежутком при первом переходе через нулевое значение. На этом работа разрядника закончена, и он снова готов к действию.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Устройства грозозащиты воздушных линий и трансформаторных подстанций

Причины и виды грозовых перенапряжений

Атмосферные перенапряжения возникают от удара молнии в элементы распределительных электрических сетей или от индукции при разрядах на землю вблизи ВЛ. Эти перенапряжения отличаются большими кратностями (тысячи киловольт) и имеют форму апериодического импульса длительностью несколько десятков микросекунд. Для унификации разрядных характеристик изоляции в нашей стране стандартизована испытательная волна длиной 40 мкс фронтом волны 1,5 мкс (рис. 1).

Рис. 1. Стандартное импульсное испытательное напряжение

Величины перенапряжений зависят главным образом от параметров молнии. Основными параметрами молнии являются амплитуда тока, ее крутизна, длина волны тока и длина ее фронта, форма и полярность этой волны, волновое сопротивление канала молнии.

Амплитуда тока молний колеблется от сотен ампер до нескольких сотен килоампер. Вероятность ударов молний в хорошо заземленные объекты обратно пропорциональна значению тока, например, токи величиной 140 кА составляют 0,4 % всех разрядов, токи 40 кА — 20 %, а вероятность токов меньше 10 кА — больше 60 %.

Форма волны тока имеет вид импульса с крутым фронтом в большинстве с отрицательной полярностью. Ток молнии, протекая по своему каналу как по своеобразному проводнику, обладает волновым сопротивлением около 200 — 400 Ом.

Во время удара молнии в электрическую сеть возникают электромагнитные волны и распространяются вдоль линий электропередачи со скоростью близкой скорости света.

Читайте также:  Касательное напряжение возникающее в жидкости

В электрических сетях наблюдаются два вида перенапряжений от воздействия молний:

  • от прямого удара молний в элемент электрической сети;
  • индуктированные при ударе молнии в землю или другие предметы вблизи линии.

Непосредственно в линию попадают все удары молнии с полосы шириной шестикратной средней высоты подвески верхнего провода. Эти перенапряжения являются наиболее опасными.

Индуктированные перенапряжения в редких случаях (один-два случая в год на 100 км линии) достигают 300 — 400 кВ, перенапряжения в 100 — 150 кВ случаются раз в год на ВЛ длиной 100 км. На ВЛ с деревянными опорами индуктированные перенапряжения не вызывают отключения линии, но они могут привести к перекрытию изоляции оборудования. На линиях 6 и 20 кВ с железобетонными опорами они вызывают отключения.

Грозоупорность воздушных линий характеризует способность линейной изоляции противостоять атмосферным перенапряжениям и зависит от ее конструкции, уровня изоляции проводов и интенсивности грозовой деятельности.

Интенсивность грозовой деятельности оценивается по числу грозовых часов (дней) в году. Для средней полосы страны число грозовых дней составляет 20 — 30. В течение одного грозового дня на 1 км земной поверхности в среднем происходит 0,1 — 0,15 разрядов молний.

Возможность перекрытия изоляции определяется сопоставлением вольт-секундной характеристики волны перенапряжения и соответствующей характеристики изоляции.

Импульсное перекрытие изоляции может привести к образованию электрической дуги с последующим отключением линии. Для оценки грозоупорности ВЛ и эффективности устройств грозозащиты применяются две основные характеристики: уровень грозоупорности или защитный уровень ВЛ и удельное число грозовых отключений.

Уровнем грозоупорности называется наименьший ток молний в килоамперах, который вызывает перекрытие изоляции при прямом ударе в линию.

Удельным числом отключений называется число отключений ВЛ, вызванных действием грозовых рязрядов, приходящихся на каждые 100 км ВЛ в год.

Оба параметра в основном зависят от конструктивных размеров ВЛ, т. е. от расстояния между проводами разных фаз и высоты подвески проводов, от типа изоляторов и их числа в гирлянде, от изоляционных свойств опор.

Воздушные линии на деревянных опорах имеют комбинированную изоляцию (изоляторы и дерево), поэтому импульсная прочность линейной изоляции значительно выше, чем на ВЛ с железобетонными опорами. Из опытов напряжение перекрытия дерева составляет 200 — 300 кВ/м.

Защита подстанций от прямых ударов молнии и грозовых волн, набегающих с ВЛ

Опасные грозовые перенапряжения в распределительных устройствах (РУ) подстанций возникают при непосредственном поражении их молнией и при набегании на подстанцию грозовых волн с ВЛ.

Такие волны возникают в результате непосредственного поражения проводов молнией и обратных перекрытий изоляции с опоры, оказавшейся под высоким потенциалом при грозовом ударе в ее вершину или трос.

Опасными являются удары молнии на участке ВЛ вблизи подстанций. Эти участки называются опасной зоной (подходом).

В РУ 6 — 10 кВ могут возникать опасные перенапряжения от индуктированных зарядов на проводах при ударах молнии в землю или другие объекты вблизи ВЛ или подстанций.

Защита открытых распределительных устройств (ОРУ) от прямых ударов молнии выполняется при помощи стержневых молниеотводов.

Расположение молниеотводов на подстанциях и их заземление должны обеспечить защиту от поражений молнией токоведущих частей РУ и ограничить опасность повышения напряжения на заземленных частях электротехнического оборудования.

Заземляющие устройства подстанций должны надежно защитить электрическое оборудование от обратных перекрытий изоляции при ударах молнии в молниеотводы и в заземленные конструкции подстанций.

Стержневые молниеотводы устанавливаются на конструкциях ОРУ или выполняются отдельно с обособленными заземлителями. При установке молниеотводов на конструкциях в ОРУ 35 — 110 кВ может значительно возрастать напряжение на заземляющем контуре и заземленных частях оборудования.

В ОРУ 35 — 110 кВ для снижения вероятности обратных перекрытий увеличивается число магистралей заземляющего контура, отходящих от основной стойки с молниеотводом. Вблизи стойки устанавливаются дополнительные вертикальные электроды. Гирлянды изоляторов на порталах 35 кВ с установленными на них молниеотводами выполняются на класс напряжения 110 кВ.

Выбор мероприятий для защиты оборудования РУ от набегающих с ВЛ волн атмосферных перенапряжений определяется параметрами защищаемого оборудования, схемой электрических соединений подстанции и конструкцией присоединенных к ней ВЛ.

Наиболее совершенным средством грозозащиты оборудования подстанций являются вентильные разрядники. В сочетании со средствами грозозащиты, установленными на подходе подстанции, вентильные разрядники позволяют ограничивать перенапряжения на подстанции до допустимых для оборудования значений.

Выбор числа, типа, а также размещение разрядников производятся с учетом схемы коммутации подстанции, уровня изоляции защищаемого оборудования, числа присоединенных к шинам подстанции линий и длины защищенных подходов к подстанции.

Повышение надежности грозозащиты подхода к подстанции достигается:

  • путем подвески тросов на подходах, не защищенных тросом по всей длине;
  • уменьшением их защитных углов;
  • снижением сопротивлений заземления опор и применения конструкций опор с повышенной грозоупорностыо;
  • установкой разрядников или искровых промежутков в начале подхода на ВЛ с деревянными опорами.

Рекомендуемые схемы грозозащиты подстанций 35 — 500 кВ от набегающих волн с ВЛ приведена на рис. 2, а, б.

Читайте также:  Усилитель напряжения токового шунта

Рис. 2. Схема защиты подстанции 35 — 500 кВ от грозовых перенапряжений: а — ВЛ, защищенная тросом по всей длине; б — ВЛ на деревянных опорах, не защищенная тросом по всей длине

Для реализации схемы грозозащиты необходимо установить разрядники в РУ и защищать тросами подходы в пределах опасной зоны.

На ВЛ с деревянными опорами без тросов для снижения амплитуды волны рекомендуется устанавливать в начале подхода к подстанции разрядники. Они одновременно защищают от перекрытия на землю опору подхода, изоляция которой ослаблена заземляющими спусками от тросов.

Для подстанции регламентируется максимально допустимое расстояние от разрядника до защищаемого оборудования и длина защищаемого подхода ВЛ.

Для подстанций 35 и 110 кВ, подключаемых короткими ответвлениями к действующим ВЛ на деревянных опорах без тросов, допускается применение упрощенной схемы грозозащиты с укороченным защищенным подходом. В этом случае вентильные разрядники устанавливаются в непосредственной близости к трансформатору (на расстоянии не более 10 м).

Упрощенная защита может применяться для подстанций с трансформаторами мощностью до 40 MB-А. При длине ответвления от магистральной линии электропередачи менее 150 м защищается тросом ответвление и по одному пролету магистральной линии по обе стороны от него.

Для уменьшения тока через вентильный разрядник на подходе ВЛ к подстанции по ходу грозовой волны должны быть установлены два комплекта трубчатых разрядников (рис. 3, а). При длине ответвления 150 — 500 м трос подвешивается только на ответвлении и устанавливаются три комплекта трубчатых разрядников (рис. 3, б). При длине ответвления более 500 м трос подвешивается только на ответвлении и защита подстанции осуществляется по рекомендуемым схемам (рис. 2).

Рис. 3. Схема защиты подстанции на ответвлениях от грозовых перенапряжений: а — длина ответвления менее 150 м; б — то же 150 — 500 м.

Рис. 4. Схема грозозащиты РУ 3 — 20 кВ

Если ВЛ защищена тросом по всей длине, установка разрядников на разомкнутом конце линии и отходящих от нее ответвлений не требуется.

Если разомкнутый конец линии, не имеющий защиты тросом по всей длине, может длительно находится под напряжением, то для защиты изоляции разомкнутого выключателя или разъединителя устанавливается трубчатый разрядник на расстоянии не более 60 м.

В упрощенных схемах грозозащиты подстанции установка трубчатого разрядника на конце длительно отключенного ответвления не требуется при его длине до 250 м. В этом случае защита обеспечивается трубчатыми разрядниками РТ1 и РТ2 (рис. 3).

В районах, имеющих не более 40 грозовых часов в год, длина защищенного подхода к подстанции 35 кВ с двумя трансформаторами общей мощностью до 2000 кВ-А и одним трансформатором мощностью до 1600 кВ-А может быть сокращена до 0,5 км. При этом расстояние между разрядниками и трансформатором не должно превышать 10 м.

Амплитуда волны, набегающая на подстанцию с ВЛ на деревянных опорах, ограничивается трубчатым разрядником РП, устанавливаемым на расстоянии 200 — 300 м от ввода в подстанцию.

Сопротивление заземления трубчатого разрядника не должно превышать 10 Ом. На ВЛ с металлическими или железобетонными опорами установка разрядника РТ1 не требуется, так как низкий уровень линейной изоляции таких линий исключает опасность прихода на подстанцию волн с большой амплитудой. Применение тросов для защиты подходов линий электропередачи 6 — 20 кВ неэффективно.

Если ВЛ 6 — 20 кВ соединена с подстанцией кабельной перемычкой, для защиты кабельной воронки в месте перехода воздушной линии в кабель устанавливается трубчатый или вентильный разрядник. Заземляющие зажимы разрядника должны быть кротчайшим путем присоединения к броне оболочки кабеля.

Трубчатый разрядник, установленный перед кабельной воронкой, обеспечивает защиту отключенного выключателя и кабельной воронки со стороны выключателя при длине кабеля до 50 м. При установке на линейном конце кабеля вентильного разрядника типа РВП изоляция разомкнутого конца будет защищена при любой длине кабеля.

При подходах ВЛ 6 — 20 кВ к подстанциям без кабельных перемычек защита разомкнутого выключателя или разъединителя осуществляется в соответствии с рекомендациями данными ранее.

Для РУ 6 — 10 кВ, имеющих кабельную связь между шинами и трансформатором расстояние между вентильными разрядниками на шинах и трансформатором не ограничивается. В случае воздушной связи между шинами РУ 6 — 10 кВ и трансформатором расстояние между разрядником и трансформатором не должно превышать 90 м при ВЛ на металлических и железобетонных опорах и 60 м при ВЛ на деревянных опорах.

Защита открытых и закрытых подстанций 6 — 10/0,4 кВ, а также РУ 6 — 10 кВ подстанции 35 кВ с трансформаторами мощностью до 560 кВ-А осуществляется комплектом вентильных разрядников, установленных на сборке у трансформатора или на выходе ВЛ 6 — 10 кВ.

Для защиты переключательных пунктов устанавливаются вентильные разрядники: один комплект на каждую питающую линию. Заземлители разрядников следует присоединять к общему заземляющему устройству переключательного пункта.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Источник

Оцените статью
Adblock
detector