Может ли эдс быть больше чем напряжение

Чем отличается ЭДС от напряжения

В чем разница между электродвижущей силой (ЭДС) и напряжением

Напряжение — это следствие прохождения электрического тока по цепи. Оно возникает на участках с сопротивлением на пути у электрического тока. Любая материя имеет сопротивление (кроме сверхпроводников), поэтому на всем пути у электрического тока есть напряжение, которое его толкает по цепи. Где-то оно больше, где-то меньше, это зависит от сопротивления конкретного участка.


Электродвижущая сила (ЭДС) — это сила, которая перемещает заряды по замкнутой цепи.

Давайте разберем пример по аналогии с замкнутой цепью.

Подадим через трубу воду. Она будет создавать давление на стенках труб. А от чего идет это давление? От воды? Нет. Это давление является частью напора, которая двигает воду через трубу. И напор — это и есть ЭДС. Напряжение же в этом примере — это давление на стенках труб. То есть, вода сама по себе не пойдет по трубе, если не будет напора. И давление не возникнет в трубе, если не будет напора. Конечно, в этом примере не все так точно, но он помогает намного проще разобраться в сути.

Сумма всех напряжений на цепи = ЭДС. Это второй закон Кирхгофа. Электродвижущая сила — это и есть причина движения электронов по цепи.

У ЭДС сторонние силы (химические реакции, солнечная энергия, механическая работа и т.п.) выполняют работу по перемещению заряда по замкнутой цепи от своего отрицательного потенциала к положительному. Проще говоря, ЭДС — это завод по производству электрического тока.

А напряжение — это часть ЭДС на участках замкнутой цепи. Напряжение, в отличие от ЭДС, выполняет электрическую работу по перемещению зарядов по цепи. Например, при последовательном соединении оно может быть везде разным. И оно появляется из-за того, что у электронов возникают препятствия на своем пути. И чем сильнее это препятствие, тем больше полю нужно потратить энергии для перемещения заряда.

То есть, именно от электрического тока и сопротивления зависит то, какое падение напряжения (часть ЭДС) будет на нагрузке: U=RI.

А ЭДС в свою очередь — это источник всех напряжений в цепи. Без ЭДС нет и электрического тока. Как и напряжения.

Грубо говоря, ЭДС плавно размазывается по всей электрической цепи в виде напряжения, когда цепь замкнута. Когда цепь не замкнута — в ней нет напряжения. Напряжение выполняет только электрическую работу по перемещению зарядов по цепи. Но без замыкания цепи нет и напряжения.

Напряжение само по себе невозможно померить без замыкания цепи. Вы не сможете измерить вольтметром или мультиметром не замкнутый источник. Просто потому, что измерительный прибор замыкает цепь и измеряет проходящий через него ток. Этот ток перемножается с выбранным шунтом (сопротивлением) и получается измеренное напряжение.

Здесь нет никакого противоречия. Разница потенциалов источника (ЭДС) делает работу по перемещению зарядов по цепи. Эта работа распределяется по всем участкам цепи, в зависимости от сопротивлений. И только когда цепь замкнута и электроны могут идти по цепи (им есть куда идти) — возникает напряжение. Поэтому измерить напряжение без замыкания цепи невозможно. И невозможно даже в теории посчитать напряжение без замыкания цепи. Чтобы узнать напряжение, нужно знать или мощность или силу тока. Данные о силе тока или о мощности можно узнать только после замыкании цепи. пусть даже и в теории.

Практически нулевое сопротивление может быть только у сверхпроводников.

Эта путаница в понятиях часто вводит в заблуждение, такие как «Если напряжение — это следствие прохождение тока, то почему напряжение — это причина движения зарядов?». Причина прохождения электрического тока в цепи это ЭДС. Следствие прохождения тока по цепи на отельных участках — это возникновение напряжения. Напряжение всей цепи равно ЭДС.

Например, электродвижущая сила какого-нибудь аккумулятора равна 4,88 В, а напряжение на его клеммах 4,85 В. Стоит ли использовать значения электродвижущей силы, если несколько процентов вольт все равно останутся на клеммах источника?

В бытовом плане не принято использовать термин ЭДС, в этом нет особой необходимости. Но если вы рассчитываете схемы, собираете их или паяете, то сопротивление источника питания — очень важный параметр. Согласование сопротивлений влияет на всю работу схемы. И это касается не только источников питания, но и всей аналоговой и цифровой техники.

Читайте также:  Трансформатор выдает меньшее напряжение чем должен

Теория относительности и напряжение

Один из них заряжен на +15В, второй на +5В, а третий — 0. Кто из них будет положительнее, а кто отрицательнее? Вся материя состоит из молекул. Молекулы в свою очередь состоят из атомов.

Третий шарик, который нейтрален (у него протоны и электроны скомпенсированы) будет отрицательным по отношению к первым двум. Потому, что относительно тех шариков, у этого шарика больше электронов. Положительные стремятся заполучить их и притягиваются к нему. А что насчет двух положительных шариков? Тот, кто менее положительный — становится отрицательным. Если вычесть значение второго шарика из остальных, то получится следующая ситуация: у первого шарика +10В, у второго 0В, а у третьего -5В.

Относительно первого шарика остальные два стали отрицательными, и разница потенциалов увеличилась. Поэтому, если два каких-либо тела оба положительно (или отрицательно) заряжены с разницей, они могут быть относительно друг друга разноименными.

Это не противоречит закону Кулона. Два положительных (или отрицательных) шарика будут отталкиваться друг от друга, когда они одинаково заряжены. То есть, если есть два шарика +5В и +5В они начнут отталкиваться, но если они будут +4В и +5В — начнут притягиваться, пока не компенсируют заряды друг друга до одного значения (+4,5 В). Относительно 0 они все так же остаются положительно заряженными телами.

Источник

Чем отличается ЭДС от напряжения

Чем отличается ЭДС (электродвижущая сила) от напряжения? Рассмотрим сразу на конкретном примере. Берем батарейку, на которой написано 1,5 вольт. Подключаем к ней вольтметр, как показано на рисунке 1, чтобы проверить, действительно ли батарейка исправна.

Вольтметр показывает 1,5 В. Значит, батарейка исправна. Подключаем ее к маленькой лампочке. Лампочка светится. Теперь параллельно лампочке подключаем вольтметр, чтобы проверить: действительно ли на лампочку приходится 1,5 В. Получается схема, показанная на рисунке 2.

И тут оказывается, что вольтметр показывает, например, 1 В. Куда потрачены 0,5 В (которые разность между 1,5 В и 1 В)?

Дело в том, что любой реальный источник питания имеет внутреннее сопротивление (обозначается буквой r). Оно во многих случаях снижает характеристики источников питания, но изготовить источник питания вообще без внутреннего сопротивления невозможно. Поэтому нашу батарейку можно представить как идеальный источник питания и резистор, сопротивление которого соответствует внутреннему сопротивлению батарейки (рисунок 3).

Так вот, ЭДС в данном примере – это 1,5 В, Напряжение источника питания – 1 В, а разница 0,5 В была рассеяна на внутреннем сопротивлении источника питания.

ЭДС – это максимальное количество вольт, которое источник питания может выдать в цепь. Это постоянная для исправного источника питания величина. А напряжение источника питания зависит от того, что к нему подключено. (Здесь мы говорим только о тех типах источников питания, которые изучаются в рамках школьной программы).

В нашем примере лампочка с сопротивлением R и резистор соединены последовательно, поэтому ток в цепи можно найти по формуле

И тогда напряжение на лампочке равно

Получается, чем больше сопротивление лампочки, тем больше вольт приходится на нее, и тем меньше вольт бесполезно теряется в батарейке. Это касается не только лампочки и батарейки, но и любой цепи, состоящей из источника питания и нагрузки. Чем больше сопротивление нагрузки, тем меньше разница между напряжением и ЭДС. Если сопротивление нагрузки очень большое, то напряжение практически равно ЭДС. Сопротивление вольтметра всегда очень большое, поэтому в схеме на рисунке 1 он показал значение 1,5 В.

Читайте также:  Регулятор напряжения карго для уаз патриот

Пониманию смысла ЭДС мешает то, что в быту мы этот термин практически не употребляем. Мы говорим в магазине: «Дайте мне батарейку с напряжением 1,5 вольта», хотя правильно говорить: «Дайте мне батарейку с ЭДС 1,5 вольта». Но так уж повелось…

Понравилась статья? Размести ссылку на сайт в социальных сетях

Источник

Чем ЭДС отличается от напряжения

При изучении физики мы встречаемся с такими понятиями как ЭДС, которое является аббревиатурой от ЭлектроДвижущая Сила и напряжение . Обе величины измеряются в Вольтах , что наводит в голове путаницу. Ведь если величины имеют одинаковую единицу измерения, то и сами величины по логике должны быть одинаковыми.

На практике понятия ЭДС и напряжение приравнивают . Действие это не совсем правильное с физической точки зрения и если в некоторых случаях оно спасает и позволяет решить задачку, то в других станет проблемой и приведет к ошибочному восприятию. ЭДС можно приравнивать к напряжению, но не в физическом смысле.

Для понимания этих различий следует предварительно вспомнить определения рассматриваемых понятий .

Определение, которое даёт напряжению учебник, да и википедия тоже, звучит так:

Электрическое напряжение — это скалярная физическая величина, значение которой равно работе эффективного электрического поля, совершаемой при переносе единичного пробного электрического заряда из точки A в точку B.

Высказывание мало понятно человеку , который или всё уже подзабыл, или только изучает основы теории. На практике для объяснения что такое напряжение лучше подойдет картинка:

Если сравнить проводник с трубой, по которой течет вода, то напряжение — это тот самый напор воды . В одной и той же трубе может протекать много воды или мало воды. Когда воды мало — напряжение низкое. Воды много — напряжение высокое. А вот количество воды — это уже ток. Выводим из этих рассуждений, что напряжение можно сравнивать с давлением в точке на стенку трубы .

Теперь про определение ЭДС . Оно тоже не очень-то «юзерфрендли».

Википедия и учебники формулируют его примерно так:

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил действующих в квазистационарных цепях постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура.

Из сложного определения не совсем ясно, что речь идёт о замкнутой электрической цепи, в которой есть источник тока. Но зато прослеживается различие. В одном случае это работа электрического поля по переносу пробного заряда (напряжение), а в другом — работа сторонних СИЛ по перемещение заряда вдоль всего контура (ЭДС) .

Сторонние силы — это силы не электростатического происхождения. Они могут быть самые различные. Например, в батарейке они возникают за счет энергии химических реакций между электродами и электролитами, а в генераторе из-за механической энергии вращения ротора генератора. Скажем, потерли мы расческу о шерстяную кофту. Вот факт потирания и был фактом проявления работы сторонних сил. Ну а в результате сформировался заряд. Логика такая же.

Для упрощения можно было бы сказать, что ЭДС есть способность источника тока создавать в цепи разность потенциалов.

Электрический ток, как вы наверное уже поняли исходя из логики определения напряжения, часто сравнивают с водопроводной системой. Прибегнем к сравнению вновь.

Для того, чтобы вода циркулировала по трубопроводу, эквивалентному нашей цепи, нужен насос. Этот насос является источником тока, а ЭДС — это способность такого насоса создавать в трубопроводе давление . Есть такая штука, которая называется напор воды. Вот именно она лучше всего и подходит для этого сравнения.

Возвращаясь к сравнению напряжения с водой выше, напряжение будет давлением на трубу, а напор воды, который обеспечивает это давление — будет ЭДС.

Насос создает напор воды, который формирует давление. А источник тока в цепи, создает разность потенциалов, которая обеспечивает напряжение. Способность создать напряжение — это и есть электродвижущая сила . Или можно сказать так, что причиной появления напряжения является электродвижущая сила . Без ЭДС нет электрического тока, а значит не может быть и напряжения.

Читайте также:  Arduino nano напряжение логической единицы

Получается, что прямое приравнивание ЭДС и напряжения является некорректным приемом . Ведь разница между электродвижущей силой и напряжением заключается в том, что напряжение является «следствием работы» электродвижущей силы.

Источник

Чем отличается ЭДС от напряжения

Интересно многие сразу поняли, в чем разница между ЭДС и напряжением? И никого не поправлял учитель (учительница) по физике, когда на практических занятиях говорил (-ла) о том, что мы подключаем именно источник ЭДС, а не напряжения? В большинстве случаев мы с вами путались, потому что и ЭДС, и напряжение измеряется в Вольтах. Так давайте все-таки разберемся, чем принципиально отличается ЭДС от напряжения.

Итак, для начала давайте разберемся, что такое ЭДС . Электродвижущая сила (ЭДС) — это такая физическая величина, которая характеризует работу сторонних (не потенциальных) сил в источниках переменного либо же постоянного тока.

В замкнутой цепи ЭДС — это работа сил, совершаемая для перемещения единичного заряда вдоль всего контура.

Из выше представленного определения вытекает следующее: источниками ЭДС являются силы, которые не имеют прямое отношение к электростатике, но при этом они являются силами, которые создают движение заряда в замкнутой электрической цепочке.

Например, при механическом вращении обмотки ротора в электромагнитном поле, в ней будет формироваться индукционная ЭДС. При этом формирование ЭДС будет проходить в каждом витке отдельно, но при этом электродвижущая сила соседних витков будет складываться, и на выходе мы будем иметь сумму ЭДС всех витков.

Если посмотреть на аккумуляторные батареи, то в них источником ЭДС является химическая реакция.

Кроме этого источниками могут выступать так называемые элементы Пельтье, в которых ЭДС образуется при термическом нагреве.

Пьезоэффект (когда при механическом воздействии на материал на его концах образуется разность потенциалов) также относится к источникам ЭДС. Впрочем, как и фотоэффект.

Из выше представленных примеров видно, что, применяя различные материалы и способы их взаимодействия, можно получить ЭДС, способную организовать упорядоченное движение заряженных частиц в замкнутом контуре.

Условно принято считать, что ЭДС — это работа в 1 Джоуль, совершаемая при перемещении заряда в 1 Кулон и измеряется в Вольтах.

ЭДС = 1Джоуль/1Кулон= 1 Вольт .

Ну а теперь давайте переключим свое внимание на напряжение.

Что такое напряжение

Итак, напряжение измеряется в аналогичных величинах, то есть в Вольтах. И напряжение — это разница потенциалов между двумя точками цепочки. Причем данные потенциалы рассматриваются только в электростатическом поле.

Получается, если мы с вами будем перемещать заряд величиной в 1 Кулон и точку №1 в точку №2, мы так же будем совершать работу в 1 Джоуль, при том условии, что разница потенциалов между точками будет равна 1 Вольт.

Вроде одно и то же, но в случае с напряжением обязательным условием является наличие электростатического поля. А откуда оно взялось? Так вот источником этого поля и является подключенный к цепи источник ЭДС.

Если провести аналогию с водонапорной башней, то можно представить следующую картинку:

На картинке наглядно продемонстрирована разница между ЭДС и напряжением. В правой части жидкость перемещается за счет давления (напряжения), а в левой части за счет работы сторонних сил (электродвижущей силы).

Получается, если мы с вами возьмем любой гальванический элемент, например, батарейку и измерим с помощью мультиметра его напряжение без подключенной нагрузки, то таким образом мы получим величину ЭДС.

Если же мы с вами создадим замкнутую цепь, в которую будет включена любая нагрузка, то, измеряя напряжение на тех же выводах батарейки, мы с вами увидим уже напряжение, и оно будет несколько меньше чем величина ЭДС.

Это связано с тем, что внутри любого источника ЭДС присутствует внутреннее сопротивление и когда мы подключаем нагрузку, происходит падение напряжения не только на концах нагрузки, но и на самом внутреннем сопротивлении источника ЭДС.

Если вам понравилась статья, тогда оцените ее лайком и спасибо, что уделили свое внимание.

Источник

Оцените статью
Adblock
detector