Обратная связь стабилизатор напряжения

Стабилизаторы напряжения и тока

1 Общая классификация

Стабилизаторами напряжения (тока) называются устройства, автоматически поддерживающие напряжение (ток) на стороне потребителя с заданной степенью точности.

Основными дестабилизирующими факторами, вызывающими изменение напряжения (тока) потребителя, являются: колебания питающих напряжений; изменения потребляемой нагрузкой мощности.

Стабилизаторы разделяют в зависимости от рода напряжения (тока) на стабилизаторы переменного напряжения (тока) и стабилизаторы постоянного напряжения (тока). В свою очередь они делятся на стабилизаторы параметрические и компенсационные.

В параметрических стабилизаторах используются нелинейные элементы и стабилизация напряжения (тока) осуществляется за счет нелинейности их вольт-амперных характеристик.

Для стабилизации переменного напряжения используются дроссели с насыщенным ферромагнитным сердечником. Для стабилизации постоянного напряжения находят широкое применение кремниевые стабилитроны, стабисторы. В стабилизаторах тока используются полевые и биполярные транзисторы.

Компенсационные стабилизаторы представляют собой систему автоматического регулирования, содержащую цепь отрицательной обратной связи. Эффект стабилизации в данных устройствах достигается за счет изменения параметров управляемого прибора, называемого регулирующим элементом, при воздействии на него сигнала обратной связи. В компенсационных стабилизаторах напряжения сигнал обратной связи является функцией выходного напряжения, а в стабилизаторах тока – функцией выходного тока.

В зависимости от вида регулирования они, в свою очередь, подразделяются на непрерывные, импульсные и непрерывно-импульсные стабилизаторы.

Основным параметром как параметрических, так и компенсационных стабилизаторов постоянного напряжения и тока является коэффициент стабилизации.

Коэффициент стабилизации для стабилизаторов напряжения – отношение относительных приращений напряжений на входе и выходе стабилизатора:

где ∆Uвх и ∆Uвых – приращения входного и выходного напряжений стабилизатора при неизменном токе нагрузки;

соответственно Uвх, Uвых – номинальные значения входного и выходного напряжений стабилизатора.

Коэффициент стабилизации для стабилизаторов тока:

  1. Коэффициент стабилизации стабилизатора тока по входному напряжению

где Iн, ∆Iн – ток и приращение тока в нагрузке соответственно.

Коэффициент Кст.т определяется при постоянном сопротивлении нагрузки (Rн = const).

  1. Коэффициент стабилизации тока при изменении сопротивления нагрузки

где Rн, ∆Rн – сопротивление нагрузки и приращение сопротивления нагрузки стабилизатора при постоянном входном напряжении соответственно; ri – внутреннее сопротивление стабилизатора.

Коэффициент К определяется при постоянном входном напряжении (Uвх = const);

2 Параметрические стабилизаторы напряжения

В качестве параметрических стабилизаторов постоянного напряжения используют нелинейные элементы, напряжение которых мало зависит от тока, протекающего через них. В качестве таких нелинейных элементов чаще всего применяют кремниевые стабилитроны и стабисторы.

Кремниевые стабилитроны – это плоскостные диоды, изготовленные по особой технологии. Cтабилитроны работают на обратной ветви вольтамперной характеристики в области пробоя. В области пробоя незначительное увеличение напряжения вызывает существенное увеличение тока через стабилитрон. Однако «пробой» рn-перехода не приводит к повреждению стабилитрона, если ток не превышает предельно допустимый.

Стабистор отличается от стабилитрона тем, что он работает на прямой ветви вольт-амперной характеристики и поэтому включается в цепь стабилизации в прямом направлении. Конструктивно стабистор представляет собой алюминиевый диск, на одну из плоскостей которого нанесен слой сплава олова с висмутом и кадмием. Селеновые стабисторы применяют для стабилизации напряжения менее 3 В. В последнее время промышленность выпускает стабисторы на основе кремния.

На рисунке 1 представлена схема однокаскадного параметрического стабилизатора на стабилитроне. Схема стабилизатора состоит балластного резистора RБ (гасящего резистора), включенного последовательно с нагрузкой. Параллельно нагрузке включается стабилитрон VD.

Рисунок 1 – Схема однокаскадного параметрического стабилизатора на стабилитроне

Для повышения стабильности напряжения может применяться схема каскадного соединения стабилитронов.

В качестве параметрических стабилизаторов постоянного тока используются нелинейные элементы, ток которых мало зависит от напряжения, приложенного к ним. В качестве такого элемента можно использовать полевой транзистор.

Широкое распространение получила схема параметрического стабилизатора тока на полевом транзисторе, когда затвор и исток закорочены (рисунок 2).

Рисунок 2 – Схема параметрического стабилизатора тока на полевом транзисторе

Полевой транзистор включен последовательно с сопротивлением нагрузки. Из характеристик полевого транзистора видно, что если напряжение затвор-исток неизменно, то и ток стока полевого транзистора изменяется незначительно при изменении напряжения сток-исток.

3 Компенсационные стабилизаторы постоянного напряжения с непрерывным регулированием

Наиболее широкое применение получили схемы непрерывных стабилизаторов напряжения с последовательным и параллельным включением регулирующего элемента в цепи постоянного тока.

В качестве основной элементной базы в стабилизаторах с непрерывным регулированием используют транзисторы и интегральные схемы в виде операционных усилителей. В настоящее время промышленность выпускает также маломощные непрерывные стабилизаторы напряжения в виде полупроводниковых микросхем.

Рисунок 3 – Структурная (а) и принципиальная (б) схемы транзисторного стабилизатора напряжения

Структурная и принципиальная схемы транзисторного стабилизатора напряжения приведены на рисунке 3. Регулирующий элемент 1 (рисунок 3, а) включается последовательно с нагрузкой на выходе. Выходное напряжение сравнивается в элементе 3 с напряжением эталонного источника 4. Отклонение напряжения от заданного значения с выхода элемента 3 воздействует через усилитель 2 на регулирующий элемент 1. С делителя напряжения R2, Rп, R3 (рисунок 3, б) снимается напряжение выхода, которое прикладывается к базе транзистора VT2. Одновременно с параметрического стабилизатора, составленного из сопротивления R4 (играющего роль балластного) и кремниевого стабилизатора VD, снимается эталонное напряжение, которое подается в эмиттерную цепь транзистора VT2. Таким образом, напряжение между базой и эмиттером Uб.э2 транзистора VT2 равно разности напряжений выходного и эталонного. Транзистор VT2 включен как обычный усилитель постоянного тока с общим эмиттером, где в качестве коллекторной нагрузки используется сопротивление R1. С увеличением напряжения выхода увеличивается напряжение Uб.э2 и транзистор VT2 увеличивает коллекторный ток Iк. Соответственно уменьшается напряжение между базой и эмиттером транзистора VT1, являющегося регулирующим элементом. При этом его внутреннее сопротивление увеличивается, а напряжение на выходе стабилизатора снижается. Конденсатор C1 обеспечивает гибкую отрицательную обратную связь и служит для устранения возможных автоколебаний в системе. Конденсатор C2 улучшает динамические свойства стабилизатора при быстрых изменениях тока нагрузки.

Читайте также:  Регулятор напряжения верхней нити в швейной машине

Стабилизатор тока (рисунок 4) имеет большое внутреннее сопротивление и его применение эквивалентно включению в коллекторную цепь транзистора VTy очень большого сопротивления.

Рисунок 4 – Схема стабилизатора тока на биполярном транзисторе

При изменении напряжения на входе, например увеличении, в первый момент увеличивается напряжение на выходе. Увеличение напряжения Uвых ведет к увеличению напряжения на нижнем плече делителя URII. Это, в свою очередь, приводит к увеличению положительного потенциала на базе усилительного транзистора VTy и его базовый и коллекторный токи увеличиваются. Так как ток коллектора транзистора VT2 равный сумме токов Iб1+Iку, величина постоянная, то увеличение тока Iку приводит к уменьшению тока базы регулирующего транзистора Iб1. Уменьшение тока Iб1, приводит к увеличению напряжения коллектор-эмиттер регулирующего транзистора, и выходное напряжение уменьшается до своего первоначального значения.

Аналогично схема работает при изменении тока нагрузки и регулировки выходного напряжения.

4 Феррорезонансные стабилизаторы тока и напряжения

В качестве параметрических стабилизаторов широко применяют феррорезонансные стабилизаторы тока и напряжения, представляющие собой цепи из различных комбинаций насыщенных и ненасыщенных дросселей и трансформаторов, сопротивлений и емкостей. Их работа основана на том, что напряжение на насыщенном дросселе мало возрастает при увеличении тока, протекающего через дроссель. Индукция в ненасыщенном дросселе обычно 0,8—0,9 Тл, а в насыщенных 1,6—1,8 Тл. Нелинейная вольт-амперная характеристика таких стабилизаторов представлена на рисунке 5, а.

Рисунок 5 – Нелинейная характеристика феррорезонансного стабилизатора напряжения (а) и его схема (б)

Одна из схем феррорезонансного стабилизатора напряжения, приведена на рисунке 5, б. В этой схеме компенсационная обмотка wкомп включена таким образом, что ее напряжение вычитается из напряжения, снимаемого с автотрансформатора Т. Это приводит к уменьшению динамического сопротивления Rдин = dU/dI вольт-амперной характеристики и к улучшению стабилизационных свойств.

Феррорезонансные стабилизаторы применяют в различных системах электроавтоматики, электронной микроскопии, радиотелевизионных установках, телеметрии и т.д. Их достоинствами являются небольшая стоимость, высокая надежность в работе, легкость изготовления на широкий диапазон мощностей и отсутствие частей, которые быстро приходят в негодность при эксплуатации.

В качестве недостатка следует отметить зависимость стабилизированного напряжения от частоты питания и от cosφ нагрузки, а также несинусоидальность стабилизированного напряжения.

Источник

Конструктивные особенности и принцип работы стабилизаторов напряжения

Стабилизатор напряжения – это устройство, к входу которого подается напряжение с неустойчивыми или неподходящими параметрами для потребителя электроэнергии. На выводе стабилизатора напряжение уже обладает нужными (устойчивыми) параметрами, которые делают возможным снабжение электроэнергией восприимчивых к изменению вольтажа потребителей. А как работает стабилизатор напряжения, и для чего он нужен?

Стабилизаторы постоянного напряжения

Стабилизация напряжения постоянного тока требуется, если входящий вольтаж слишком мал или велик для потребителя. При прохождении через поддерживающее устройство оно становится больше или меньше до нужного значения. При необходимости схема стабилизатора может быть составлена так, чтобы выводимое напряжение имело полярность, противоположную поступающему.

Линейные

Линейный стабилизатор – делитель, в который подается неустойчивое напряжение. Выходит оно уже выравненное, со стабильными характеристиками. Принцип работы заключается в постоянном изменении сопротивления для поддержания на выводе постоянного вольтажа.

  • Простая конструкция с небольшим количеством деталей;
  • В работе не наблюдаются помехи.
  • При большом различии входящего и выходящего вольтажа линейный преобразователь тока выдает слабый КПД, поскольку большая часть вырабатываемой мощности превращается в тепло и рассеивается на регуляторе сопротивления. Поэтому появляется необходимость в установке контролирующего устройства на радиаторе достаточного размера.

Параметрический со стабилитроном, параллельный

Для схемы стабилизирующего ток устройства, в котором контролирующий работу элемент расположен параллельно нагруженной ветви, подходят газоразрядные и полупроводниковые стабилитроны.

Через стабилитрон должен проходить ток, превышающий от 3 до 10 раз ток в RL. Поэтому механизм подходит для выравнивания напряжения только в механизмах со слабым током. Обычно его используют как составной элемент преобразователей тока с более сложной начинкой.

Последовательный с биполярным транзистором

Принцип работы стабилизатора напряжения можно рассмотреть с помощью схемы устройства.

Видно, что она объединяет в себе два элемента:

  1. Уже известный нам параллельный параметрический стабилизатор на стабилитроне;
  2. Биполярный транзистор, который увеличивает ток с постоянным коэффициентом. Его еще называют эмиттерным повторителем.

Выводимое напряжение определяется по формуле: Uout = Uz — Ube. Uz – напряжение, поддерживаемое стабилитроном. Оно почти не зависит от тока, идущего через стабилитрон. Ube – разница вольтажа выходящего и стабилизируемого стабилитроном. Она почти не зависит от тока, который подается на p-n переход. Однако разница зависит от природы вещества (для кремния Ube – 0,6 В, для германия – 0,25 В). Именно из-за сравнительной независимости этих значений выводимое напряжение устойчиво.

При прохождении через трехслойный транзистор напряжение на выводе стабилизатора увеличивается. Если использование одного транзистора не удовлетворяет запросам потребителя энергии, то берется конструкция из нескольких транзисторов для увеличения тока до нужного значения.

Читайте также:  Мин 1 индикатор напряжения паспорт

Последовательный компенсационный на операционном усилителе

Компенсационный – значит с обратной связью. В этом стабилизаторе выводимое напряжение всегда сопоставляется с тем, что принято за эталон. Отличие между ними необходимо для формирования и передачи сигнала механизму, контролирующему вольтаж.

С резистора R2 снимается часть выходящего напряжения Uout, которая сравнивается с Uz (напряжение опорное) на стабилитроне, обозначенном на схеме как D1. Полученная разность проходит через операционный усилитель (на схеме U1) и передается управляющему транзистору.

Устойчивая работа обеспечивается при петлевом сдвиге фаз, который приближается к 180°+n*360°. Поскольку часть выходящего напряжения подается на усилитель, то последний сдвигает фазу на развернутый угол. Транзистор, включенный по схеме усилителя тока, не вызывает сдвига фаз. При этом петлевой сдвиг остается равным 180 о .

Импульсный

Электрический ток с неустойчивыми параметрами посредством коротких импульсов подается на накопительное устройство стабилизатора (в его роли выступает индуктивная катушка или конденсатор). Запасенная электроэнергия впоследствии выходит в нагрузку уже с другими параметрами. Возможно два варианта стабилизации:

  1. Путем управления продолжительностью импульсов и пауз между ними (принцип широтно-импульсной модуляции);
  2. Путем сравнивания выходящего напряжения с минимально и максимально допустимыми значениями. Если оно выше максимального, то накопитель перестает накапливать энергию и разряжается. Тогда на выводе напряжение становится меньше минимального. При этом накопитель снова начинает работать (принцип двухпозиционного управления).

В зависимости от схемы импульсный выравниватель тока может преобразовывать напряжение до достижения разных результатов. Поэтому различают его разновидности:

  • Понижающий (напряжение на выводе меньше, чем на вводе, но с той же полярностью);
  • Повышающий (напряжение на выводе больше, чем на вводе, но с той же полярностью);
  • Понижающе-повышающий (напряжение на выводе может быть больше или меньше, чем на вводе, но полярность та же). Устройства применяется, когда U на вводе и выводе сильно отличаются, но на вводе возможны нежелательные отклонения в большую или меньшую сторону;
  • Инвертирующий (напряжение на выводе больше или меньше, чем на вводе, полярность противоположная).
  • Импульсные помехи на выводе.

Стабилизаторы переменного напряжения

Стабилизатор переменного напряжения предназначен для поддержания постоянного тока на выводе, независимо от того, какими параметрами он обладает на вводе. Выводимое напряжение должно описываться идеальной синусоидой даже при резких скачках, падении или даже обрыве на вводе. Различают накопительные и корректирующие стабилизирующие устройства.

Стабилизаторы-накопители

Это устройства, которые сначала накапливают электроэнергию от входящего источника питания тока. Затем энергия генерируется заново, но уже с постоянными характеристиками, ток направляется к выходу.

Система «двигатель – генератор»

Принцип работы заключается в преобразовании электрической энергии в кинетическую с помощью электродвигателя. Затем генератор обратно преобразует ее из кинетической в электрическую, но ток уже обладает конкретными и постоянными характеристиками.

Клюевой элемент системы – маховик, который накапливает в себе кинетическую энергию и стабилизирует выводимое напряжение. Маховик жестко соединен с подвижными частями двигателя и генератора. Он очень массивный и обладает большой инерцией, сохраняющей скорость, которая зависит только от фазной частоты. Поскольку скорость вращения маховика относительно постоянна, напряжение остается постоянным даже при значительных провалах и скачках на вводе.

Система «двигатель-генератор» подходит для напряжения с тремя фазами. Сегодня она используется только на стратегических объектах. Ранее применялась для запитывания быстродействующих электронных вычислительных машин.

Феррорезонансный

Устройство включает в себя:

  • Индуктивная катушка с насыщенным сердечником;
  • Катушка индуктивности с ненасыщенным сердечником (внутри есть магнитный зазор);
  • Конденсатор.

Поскольку катушка с насыщенным сердечником имеет постоянное напряжение, независимо от тока, который по нему идет, путем подбора характеристик второй катушки и конденсатора можно добиться стабилизации напряжения в нужных пределах.

Принцип действия полученного механизма можно сравнить с качелями, которые трудно резко остановить или заставить качаться с большей скоростью. Даже нет необходимости каждый раз подталкивать качели, потому что колебательное движение – инерционный процесс. Поэтому допустимы сильные провалы и обрывы напряжения. Частоту колебаний тоже трудно поменять, поскольку у системы собственная установившаяся частота.

Феррорезонансные стабилизаторы были популярными в советские времена. Их использовали для снабжения электроэнергией телевизоров.

Инверторный

В схему инверторного стабилизатора включаются:

  • Входные фильтры;
  • Выпрямитель с устройством, изменяющим мощностной коэффициент;
  • Конденсаторы;
  • Микроконтроллер;
  • Преобразователь напряжения (из постоянного в переменное).

Принцип работы основан на двух процессах:

  1. Сначала входящий переменный ток преобразуется в постоянный при проходе через корректор и выпрямитель. Энергия накапливается в конденсаторах;
  2. Затем постоянный ток преобразуется в переменный выходящий. Из конденсатора ток идет к инвертору, который трансформирует ток в переменный, но с неизменными параметрами.

Пример (принцип работы стабилизатора напряжения 220В): на вводе напряжение меньше или больше 220В, его форма не соответствует синусоиде. После прохождения через выпрямитель и корректор ток становится постоянным, форма напряжения – идеальная синусоида. После прохождения через инвертор к выходу устремляется переменный синусоидальный ток с частотой 50 Гц и напряжением 220В.

Благодаря высокой отдаче механизма (КПД близко к 100%) такой стабилизатор используют для дорого оборудования медицинского и спортивного назначения.

Источники бесперебойного питания по конструкции и принципу действия аналогичны инверторным преобразующим устройствам. Сходство заканчивается на том, что накопление электроэнергии происходит не в конденсаторе, а в аккумуляторе, из которого выходит ток с нужными для потребителя параметрами.

ИБП необходимы для запитывания вычислительной техники, поскольку они не только стабилизируют напряжение, но и исключают сбой работы программ при аварийном отключении. Пример: если произойдет обрыв вольтажа, то накопленной в аккумуляторе энергии хватит для правильного завершения работы компьютера. Все данные будут сохранены, а компьютерная «начинка» останется целой.

Читайте также:  Стабилизатор напряжения в протеусе

Корректирующие

К корректирующим стабилизаторам относят преобразователи напряжения, которые изменяют его за счет добавочного потенциала, которого не доставало для получения необходимого для потребителя значения.

Электромагнитный

Другое название – ферромагнитный. От феррорезонансного отличается отсутствием конденсатора, более низкой мощностью и большими размерами.

Если линейный реактор (на схеме L1) включить последовательно с резистором Rh, а нелинейный реактор L2 включить параллельно Rh, то как бы ни менялось входящее напряжение, выводимое будет постоянным. Это обусловлено работой второго реактора в режиме насыщения, отчего вольтаж на нем не меняется при меняющемся токе. В связи с этим меняющееся напряжение на вводе не оказывает влияние на значение на выводе. Оно лишь перераспределяется между L1 и L2. Прирост от входящего значения полностью уходит на L1.

Электромеханический и электродинамический

Это два схожих по конструкции вида стабилизаторов, представляющих собой вольтодобавочный трансформатор. В них напряжение преобразуется за счет перемещения узла, снимающего ток у входа, по трансформаторной обмотке. В результате коэффициент стабилизации меняется мягко до той величины, которая нужна для выходящего напряжения.

В электромеханическом выравнивателе управление реализовывается щетками, которые быстро изнашиваются, поскольку это подвижные элементы. Снизить изнашиваемость удается в электродинамическом аналоге, в котором щетки заменены роликом.

Это единственные преобразователи тока, которые не только обеспечивают гладкую его трансформацию, но и формируют из него синусоиду. На выводе значение относительно неизменно, максимальное отклонение от номинала не превышает 3%. Такая подача энергии оптимальна для бытовой и производственной техники.

  • Широкий диапазон входящего напряжения (130-260В);
  • Отсутствие помех на выводе;
  • Возможность перегрузки до 200% на полсекунды;
  • Бесшумная работа (если нет перегрузки);
  • Отличная помехоустойчивость.
  • Нельзя применять при морозах (конструкция может работать только при непродолжительных легких заморозках и до 40 градусов тепла);
  • Низкая скорость стабилизации (проблема решается путем добавления количества щеток).

К преимуществам электродинамического аналога стоит отнести его способность работать при отрицательных температурах (не более 15 градусов мороза). Еще один плюс: конструкция выдерживает перегрузки на 200% до 120 секунд.

Релейный

Принцип работы релейного стабилизатора напряжения схож с работой других автотрансформаторных преобразователей с регулировкой по ступеням за счет включения/выключения отдельных обмоток силового автоматического трансформатора с помощью электромеханических реле. Поэтому повышение и понижение выходящего напряжения – это параллельный процесс повышения и понижения на вводе поддерживающего устройства.

Особенность релейного преобразователя – выводимое значение всегда меняется в пределах ступени. Например, задан диапазон допустимых значений от 215 до 220 Вольт. Это значит, что напряжение будет постоянно меняться в этих рамках, в то время как на вводе этот диапазон может составлять 200-230 Вольт. Размах ступени зависит от количества обмоток: чем их больше, тем меньше диапазон, и тем более ровное будет напряжение на выводе.

Из этого можно сделать вывод, что качественный стабилизатор не может показывать на экране только 220 Вольт. Если же значение не меняется, можно сделать вывод, что светодиоды расположены именно в форме числа «220» и никакого другого числа они показать не могут. Так делают недобросовестные производители для уменьшения себестоимости преобразователей переменного тока.

  • Высокая скорость стабилизации;
  • Небольшие размеры;
  • Большой диапазон напряжения на вводе (от 140 до 270 Вольт);
  • Низкая восприимчивость к изменениям входящего напряжения;
  • Допустимая перегрузка в 110% на 4 секунды;
  • Бесшумная работа;
  • Возможность работы от -20 до +40 градусов Цельсия.
  • Ступенчатая (а не плавная) стабилизация (свет моргает при большом диапазоне ступени);
  • Скорость стабилизации зависит от точности выходящего напряжения: чем точнее вольтаж, тем меньше скорость.

Электронный

Если вам нужно преобразовывать ток с неустойчивыми параметрами, то обратите внимание на электронный стабилизатор. Электронное устройство стабилизатора напряжения 220 вольт – это аналог релейного преобразователя. Разница между ними заключается только в способе смены включенной в нагруженную цепь трансформаторных обмоток.

В данной конструкции переключение происходит не благодаря наличию реле, а за счет симисторов или тиристоров. Так как механические детали отсутствуют, срок службы устройства резко возрастает. В сочетании с приемлемой стоимостью этот вариант для бытовой техники является оптимальным. В остальном преимущества и недостатки совпадают с теми, что указаны для релейного преобразователя.

Гибридный

В 2012 году в продаже появился новый вид стабилизатора – гибридный. Он представляет собой электромеханическое устройство, в конструкцию которого дополнительно входят два релейных преобразователя.

Основной элемент — электромеханический. Релейные элементы включаются в работу только тогда, когда последний уже не может выдать на выводе 220 Вольт. Это бывает, если входящее напряжение либо слишком низкое, либо слишком высокое. Так, электромеханический преобразователь работает при 144-256В. А релейный включается, когда значение опускается ниже 144В или поднимается выше 256В. Максимальный диапазон составляет 105-280 Вольт.

Гибридные преобразователи подходят для бесперебойного энергоснабжения потребителей электроэнергии в частном доме, квартире, офисе или даже магазине.

Качество и срок службы электроприборов зависит от параметров подаваемой энергии. При резких скачках, обрывах или провалах вольтажа техника выходит из строя. Противостоять этому может только бесперебойное энергоснабжение с напряжением условленного значения. Именно его позволяют получить стабилизаторы напряжения, без которых невозможна современная жизнь.

Источник

Оцените статью
Adblock
detector