Обрыв вторичных цепей трансформаторов тока

Опасность размыкания вторичной обмотки ТТ

В данной статье речь пойдет об опасности размыкания вторичной обмотки трансформаторов тока (ТТ).

Трансформаторы тока предназначены для преобразования первичного тока до наиболее удобных для измерительных приборов и реле значений и отделения цепей измерения и защиты от первичных цепей высокого напряжения.

Трансформатор тока работает при постоянной нагрузке во вторичной цепи и переменной величине тока в первичной обмотке, т.е. при переменном магнитном потоке. Нормальный режим его работы близок к условиям короткого замыкания, так как его вторичная обмотка замкнута на последовательно соединенные обмотки приборов, реле и других аппаратов с незначительным сопротивлением.

Трансформатор тока представляет собой замкнутый магнитопровод 2 (рис.9.35 а) [Л1, с.285-287] и две обмотки. Первичную обмотку 1 включают последовательно в контролируемую цепь (цепь измеряемого тока) I1. Ко вторичной обмотке 3 присоединяют последовательно токовые обмотки приборов и реле, обтекаемые током I2. Тогда коэффициент трансформации равен [Л1, с.286]:

Номинальные вторичные токи равны 5 А и 1 А.

На векторной диаграмме (рис. 9.35 б) показана результирующая магнитнодвижущая сила (МДС) F0. В нормально режиме работы она сравнительно невелика, что обусловливает малые значения магнитного потока (Ф) и электродвижущей силы Е2 (ЭДС), наводимой во вторичной обмотке.

При разомкнутой вторичной обмотке ток в ней равен нулю, т.е. I2 = 0, и МДС вторичной обмотки также равна нулю, т.е. F2=I2w2=0. Так как ток в первичной обмотке I1 и ее МДС F1 практически не изменяются, то результирующая МДС F0 увеличивается во много раз и становится равной F1.

Соответственно увеличивается магнитный поток Ф, величина которого ограничивается лишь насыщением сердечника и индукцией в стали сердечника, при этом за счет повышенных потерь в стали сердечника происходит сильный нагрев магнитопровода, вплоть до пожара.

В результате магнитный поток Ф наведет во вторичной обмотке значительную ЭДС, а напряжение на разомкнутых концах этой обмотки может возрасти с нескольких десятков до тысяч вольт, что, опасно для:

  • обслуживающего персонала;
  • изоляции вторичной обмотки;
  • приборов, реле и терминалов защит.

Поэтому при эксплуатации запрещается разрывать вторичную цепь работающего трансформатора тока согласно ПУЭ 7-издание пункт 3.4.16, тем более что это может совпасть с режимом к.з. в первичной обмотке.

Перед отключением прибора от трансформатора тока необходимо предварительно замкнуть накоротко его вторичную обмотку используя испытательные блоки или зашунтировать обмотку реле, прибора и только после этого отъединить прибор.

Нормальным режимом работы ТТ является режим К3 , а режим с разомкнутой вторичной обмоткой (режим холостого хода) — аварийным режимом . Поэтому если ТТ включен и к его вторичной обмотке не подключена нагрузка, то эту обмотку следует обязательно закоротить.

1. Электроснабжение сельского хозяйства. И.А. Будзко, 2000 г.

Источник

Проект РЗА

Сайт о релейной защите и цифровых технологиях в энергетике

Диагностика обрывов вторичных цепей РЗА. Часть 2

Продолжаем тему диагностики вторичных цепей на обрыв. В первой части мы посмотрели методы, которыми можно проверить дискретные цепи и цепи привода. Сегодня в основном поговорим об измерительных цепях.

Диагностика токовых цепей

Особенность токовых цепей состоит в том, что в них нет событий (появления или исчезновения значимого сигнала). Измерения идут постоянно, вне зависимости от наличия повреждения в первичной сети. Большую часть времени в этих цепях присутствует периодический сигнал, который не дает вам значимую информация для диагностики обрыва. И даже если сигнал исчезает, то это не обязательно означает обрыв. Возможно просто нагрузка в сети упала до нуля.

Таким образом, проконтролировать единичную токовую цепь на обрыв практически невозможно. Вы, конечно, сейчас напишите мне 100500 относительно честных способов контроля таких цепей (типа, измеряй ток I2, сравнивай с I1), но на практике, для ступенчатых защит, контроль обрыва токовых цепей не применяют. Здесь Цифровая подстанция действительно может дать фору обычной.

Другое дело дифференциальные защиты, где, при отсутствии повреждения “в зоне”, ток в защите всегда примерно равен нулю. Если вы сможете выбрать уставку алгоритма диагностики токовых цепей ниже максимального тока небаланса, но выше начальной уставки срабатывания ДЗТ, то сможете фиксировать обрывы токовых цепей . Что и делается на практике, причем как в микропроцессорных РЗА, так и в схемах с электромеханикой.

Из книги «Дифференциальная защита шин 110-220 кВ». И.Р. Таубес. БЭ. 1984 г.

Например, в схемах ДЗШ уставка начала характеристики срабатывания выбирается выше, чем рабочий ток самого нагруженного присоединения. При обрыве любой токовой цепи срабатывает сигнализация и ДЗШ выводится из работы. Это делается для того, чтобы не было ложного отключения при внешнем КЗ. Дальше у вас есть какое-то время на поиск обрыва и восстановление нормальной схемы.

Читайте также:  Трансформаторы тока высоковольтные сети для чего

Кстати, с появлением терминалов РЗА со второй группой токовых входов, под керн 0,5, появилась возможность контроля токовых цепей по избыточной информации, аналогично дискретным.

Заодно уменьшится количество электронных устройств, которые выполняют практически одни и те же функции. Правда у релейщиков и асушников могут возникнуть вопросы по объединению функций в одном устройстве. А там и служба телемеханики подтянется)

Диагностика цепей напряжения

Обрыв цепей напряжения можно проконтролировать анализируя сумму фазных напряжений и напряжений разомкнутого треугольника. Раньше для этого использовалось реле КРБ-12, сейчас алгоритмы цифровых защит. Интересно, что чистыми математикой и логикой нельзя определить обрыв нулевого провода, для этого нужно создавать несимметричную систему напряжений, например, при помощи внешнего резистора.

Из книги «Релейная защита воздушных линий 110-220 кВ типа ЭПЗ-1636». А.П. Удрис. БЭ. 1988 г.

Кроме этого контролируется аварийное срабатывание автомата защиты ТН, через его блок-контакт, для случаев, где алгоритм отказывается нечувствительным к обрыву/отключению всех цепей напряжения. Для КРБ-12 это актуально

В целом цепи напряжения контролировать на обрыв проще, чем токовые потому, что есть как минимум две вторичные обмотки ТН и аппарат защиты. При фиксации нарушения цепей напряжения выдается сигнал и происходит блокировка защит, которым для работы необходимы напряжения (например, ДЗ или направленные МТЗ). Направленные защиты могут быть переведены в ненаправленный режим, часто с изменением уставок.

Диагностика цепей на обрыв при помощи обтекания током

Вернемся к дискретным цепям, в которых нельзя использовать метод избыточной информации. Это все входные цепи с единичными контактами, переключателями и кнопками со стороны плюса опер. тока

Если вы можете пропускать небольшой фиксированный ток через такую цепь, то контроль на обрыв становится реальным. Правда создать такую цепь не просто, да и сама конструкция не вызывает у релейщиков доверия (см. рисунок ниже)

Зная напряжение опер. тока и номинал шунтирующего контакт резистора R вы определяете ток контроля цепи. Резкое увеличение тока в цепи означает замыкание контакта (работа с соответствии с основным алгоритмом), а исчезновение тока контроля Ik — обрыв цепи.

Минусы данной схемы очевидны: нужен внутренний источник питания цепей и схема анализа тока в каждом дискретном входе терминала. Да и установка резисторов параллельно каждому внешнему НО-контакту довольно скучное занятие. Поэтому в реальности схему применяют нечасто, хотя устройства с внутренним источником питания дискретных входов на рынке есть.

Лайфхак по увеличению надежности дискретных цепей РЗА

Если у вас есть терминал РЗА в большим количеством дискретных входов с изолированной точкой, как указано на рисунке ниже, то собирайте «минус» цепей оперативного тока в кольцо, а не шлейфом. Цена вопроса — один лишний провод, но при обрыве любой “сопли” вы не теряете ничего. Дешево и сердито

Да, похоже на «бабушкины секреты», но, несмотря на простоту метода, применяют его немногие. Кто сказал, что хорошие вещи должны быть сложными?

Резюме по диагностике обрывов вторичных цепей РЗА

Как видно из описания традиционных способов мы можем контролировать следующие вторичные цепи на обрыв:

  • Токовые цепи (дифф. защиты)
  • Цепи напряжения
  • Цепи управления приводом выключателя
  • Цепи питания устройств
  • Некоторые дискретные цепи (шинки, цепи с избыточной информацией)

Да, это не все цепи релейной защиты, но это основные цепи, которые влияют на надежность и работоспособность подстанции. Вкупе с ближним и дальним резервированием, а также периодическим обслуживанием, это дает очень хорошие показатели живучести системы в целом.

На Цифровой подстанции объем контроля цепей на обрыв будет выше, но это не значит, что мы получим резкое увеличение надежности в этом плане. Ведь мы стартуем не с нуля.

Опишите другие способы контроля стандартных цепей РЗА на обрыв в комментариях, если я что-то пропустил. Ну, и поставьте лайк этой статье, если она вам понравилась)

Схема завода дополнительного минуса хороша! Действительно используется «классический принцип кольца». Но тогда появляется вообще возможность и контролировать обрывы, с выводам на сигнал об этом повреждении.
1. способ. контролировать токи в начальном узле по правилу Кирхгофа, если будет разрыв где-то в цепи,то относительное соотношение токов в двух отходящих ветвях не будет поровну, исключение если так сложилось, что произошёл разрыв, в так называемой, точке потока раздела для кольцевой сети.
2. можно контролировать токи только 2 отходящих ветвей относительно друг-друга. Принцип тот же, но не будет как бы опорной (эталонной) величины от суммарного тока.

Первый способ лучше: позволяет определить произошёл разрыв и теоретически с точность между какими двум шкафами, терминалами.

Для контроля токов, с целью соблюдения надёжности и целостности цепи, для измерения токов лучше использовать ТТ пост. тока, например на — датчиках Холла и проч.

Терминалы потребляют по 20…40 Вт в режиме ожидания и по 30…60 Вт в режиме срабатывания. Если нет срабатывания и принять среднее значение 30 Вт, то с 10% точностью измерения токов, в кольце может контролироваться 20 терминалов (600 Вт или в дуге по 300 Вт). Чисто терминалов в кольце теоретически можно делать из нечетного числа терминалов, тогда разорвавшиеся дуги как бы всегда разновелики.

Читайте также:  Опросный лист трансформаторной подстанции с сухими трансформаторами

Кроме разрывов также можно, что собственно более важно — контролировать образование КЗ в этой же цепи, так как токи будут однозначно разными. Но это требует более углублённого исследования … к сожалению мало времени, есть и другие дела, поэтому кто хочет отдаю идеи займитесь и вложите эти исследования …
Как говорится, «пока верстался номер». Гипотеза: Контролировать наличие КЗ можно следующим образом: сравнивать суммарный ток с сумму токов ветвей. Когда нет КЗ токи равны, а вот если КЗ, то появятся или должны появиться уравнительные токи в кольце, а в суммарном может их не быть, нужно исследовать…

Как-то сложно. Дискретов в терминале может быть сколько угодно и обрыв тоже может произойти в любом месте цепи. Токов там тоже практически нет потому, что современный дискретный вход потребляет около 2,5 мА. Да и нельзя предсказать на 100% какие входы будут в сработанном состоянии.
Минусы различных терминалов нельзя объединять, у каждого свой опер. ток. А КЗ вообще отключаются автоматом, здесь никакой дополнительной диагностики не требуется.
Смысл кольца на минусе в том, чтобы не зависеть от единичного обрыва. Не более того

Не совсем так. По требованиям помехоустойчивости ток должен быть не менее 8 мА, хотя конечно есть и по 1,5 мА и ещё меньше. 220В/2 МОм …

Коллега, зачем такие сложности? Мало того что такой единичный обрыв может произойти, когда рак на горе свиснет, так вы еще предлагаете городить схему диагностики. При таком единичном обрыве и наличие обходного провода, диагностика проста, старый и надежный дедовский метод, все проверки начинаются с внешнего осмотра шкафа, монтажа, ячейки, протяжки клеммных соединений и т.д., тщательный осмотр выявит обрыв. Пишу как эксплуататор.

Вероятность обрыва шлейфа минуса на дискретных входах выглядит довольно маленькой, разве что чьи-то шаловливые кусачки помогут)
С другой стороны решение действительно простое и дешевое.

1) Не давно делал блокировку диф.защиты трансформатора по току небаланса с сигналом, в терминале Siprotec 4 7UT612 ,в логике СFC. Проектом не было предусмотрено, поэтому решили сделать сами.
2) На счёт лайфхака, идея не плохая, но очень-очень маловероятная.

Контроль цепей через резистор сейчас практикуется на тавридовских вакуумниках свежей итерации с тросиковой блокировкой. В параллель контакту, который рвет питание катушек включен резистор на 25 кОм для контроля исправности цепей электромагнитов

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Источник

Обрыв вторичной обмотки трансформатора тока. К чему приводит?!

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Несколько дней назад мне передали замечание, что на одном из фидеров перестал показывать амперметр, хотя нагрузка на фидере была, и причем не маленькая, около 30-50 (А).

Кстати, данная неисправность произошла в распределительном устройстве напряжением 10 (кВ) исполнения КСО.

Щитовой амперметр типа Э30 подключен через трансформатор тока ТПОЛ-10 с коэффициентом трансформации 150/5.

По приезду на подстанцию я обнаружил, что произошел обрыв провода на щитовом амперметре.

Амперметр установлен на дверце ячейки КСО и, видимо, в течение длительной эксплуатации произошло перегибание жилок гибкого проводника, что и привело к обрыву.

Напомню, что согласно ПУЭ, п.3.4.4, сечение токовых цепей должно быть не менее 2,5 кв.мм по меди или 4 кв.мм по алюминию. В моем случае применен медный гибкий провод ПВ-3 (ПуГВ) сечением 2,5 кв.мм.

В связи со случившейся ситуацией я и решил написать статью о том, что произойдет с трансформаторами тока при обрыве их вторичной цепи.

Во всех правилах, хоть в ПОТЭУ (п.42.2), хоть в ПТЭЭП (п.2.6.24), строго настрого запрещено размыкать вторичную цепь ТТ и об этом должны знать все без исключения.

К тому же об этом всегда напоминают в виде надписи «Внимание! Опасно! На разомкнутой обмотке напряжение», а то вдруг кто забудет!

А что же все таки произойдет с трансформатором тока при обрыве его вторичной цепи? Давайте разберемся!

Правда для этого нам необходимо рассмотреть принцип работы трансформатора тока и его устройство. Сильно вдаваться в подробности устройства ТТ я не буду, т.к. цель статьи заключается немного в другом, да и разновидностей ТТ в природе не мало. Если кому интересно, то могу рассказать об устройстве ТТ более подробнее на примере конкретного типа, но уже в другой своей публикации.

В общем, первичная обмотка трансформатора тока чаще всего состоит из одного витка или шины, которая подключена последовательно в силовую цепь, где необходимо измерять или контролировать ток.

Встречаются также и трансформаторы тока с многовитковой первичной обмоткой.

Вот например, трансформаторы тока ТПФМ-10 имеют многовитковую первичную обмотку. На данный момент таких ТТ на наших подстанциях осталось уже немного, т.к. мы с некоторой периодичностью заменяем их на более новые ТПОЛ-10.

Читайте также:  Ттк трансформатор тока расшифровка

Подробнее про классификацию трансформаторов тока читайте в моей отдельной статье (вот ссылочка).

Первичная обмотка (шина) имеет малое количество витков (чаще всего один) и большое сечение, соизмеримое с номинальным током силовой нагрузки.

Шина первичной обмотки проходит через магнитопровод, на котором намотана вторичная обмотка.

Вторичная обмотка имеет много витков и малое сечение, и всегда замыкается накоротко, либо через малое сопротивление подключенных к ней реле и различных приборов (Zн).

Сильно вдаваться в теорию я не буду, а попробую объяснить более по-простому.

При протекании тока в первичной обмотке трансформатора тока, по закону электромагнитной индукции возникает магнитный поток Ф1, который замыкается по магнитопроводу и пронизывает вторичную обмотку ТТ. В связи с этим, во вторичной обмотке ТТ наводится (индуцируется) ток I2 (при условии, что цепь замкнута), который образует магнитный поток Ф2, направленный встречно магнитному потоку Ф1. В итоге, в магнитопроводе образуется результирующий магнитный поток Фт, который называют основным или намагничивающим потоком.

Конструктора при проектировании рассчитывают сечение магнитопровода исходя из нормальной работы трансформатора тока, т.е. при его замкнутой вторичной обмотке. При нормальной работе трансформатора тока основной поток Фт не велик.

При разрыве вторичной обмотки ТТ произойдет следующее.

Во-первых, значительно увеличится основной магнитный поток Фт в магнитопроводе, что вызовет его нагрев. Это произойдет из-за того, что во вторичной обмотке не будет тока, а значит не возникнет встречного магнитного потока Ф2, который скомпенсирует магнитный поток Ф1 от первичной обмотки.

Во-вторых, на выводах вторичной обмотки наведется напряжение, соизмеримое с несколькими киловольтами.

Согласно закону сохранения энергии, мощность с генератора (первичная обмотка трансформатора тока в нашем случае) равна мощности, которую мы снимаем со вторичной обмотки с учетом потерь в меди и стали. В итоге, это выражение можно записать в таком виде :

Для простоты и наглядности не будем учитывать потери в меди и стали:

Запишем мощности вышеприведенного выражения через токи и напряжения:

А теперь представим, что тока I2 у нас не стало. Соответственно, выражение примет следующий вид:

У обычных трансформаторов напряжения при изменении вторичного тока I2 всегда изменяется ток в первичной обмотке I1 из-за наличия большого количества витков. А вот у трансформатора тока первичная обмотка имеет всего один виток, а изменить первичный ток I1 никак не возможно, потому что он является частью силовой цепи, где мы и контролируем его.

Поэтому, «U1·I1» является как бы константой (неизменной величиной) и для сохранения передаваемой мощности из первичной обмотки во вторичную в значительной степени увеличивается напряжение на вторичной обмотке до нескольких киловольт. В нормальном режиме на вторичной обмотке напряжение составляет буквально несколько вольт, а то и меньше (зависит от нагрузки).

На самом деле напряжение на первичной обмотке (напряжение падения на витке или шине) тоже немного изменяется, но это настолько малая величина, что ей можно смело пренебречь.

  1. Повышенное напряжение на выводах вторичной обмотки может привести к повреждению подключенных к ней устройств, в особенности это касается полупроводниковых приборов и различной электроники.
  2. Повышенное напряжение может привести к межвитковому замыканию вторичной обмотки или пробою ее на корпус, соответственно, выходу трансформатора тока из строя.
  3. Также повышенное напряжение опасно в плане поражения обслуживающего персонала электрическим током в случае ошибочного или самопроизвольного разрыва вторичных цепей ТТ.

Ну коль такая ситуация с обрывом токовых цепей ТТ фазы С у меня случилась на подстанции, то я и решил воспользоваться ситуацией, и измерить напряжение на разомкнутой вторичной обмотке.

Напряжение между выводами ТТ (421 и 410) составило 34,2 (В). Как видите, ничего критического нет и это далеко не киловольты. Тем не менее нужно учесть то, что во время измерения первичный ток ТТ составлял 30% от номинального. При номинальном же токе напряжение на разомкнутой обмотке будет гораздо и гораздо больше и не исключено, что там наведутся киловольты!

Кстати, из-за насыщения магнитопровода напряжение на разомкнутой вторичной обмотке имеет несинусоидальную форму с резкими и острыми пиками.

В общем, решил фидер в ремонт не выводить. Установил на токовом клеммнике закоротку и произвел переподключение амперметра.

Перезачистил оба конца, опрессовал их изолированными наконечниками и подключил к амперметру. Готово.

Снял закоротку с клеммника и проверил показания амперметра. Как видите, теперь амперметр показывает ток нагрузки данного присоединения.

Вот еще один пример разрыва вторичной цепи ТТ из моей практики.

При проведении пуско-наладочных работ в одном из торговых центров я обнаружил, что монтажники забыли закоротить трансформатор тока на фазе А.

И уже по традиции, рекомендую посмотреть видеоролик по материалам данной статьи:

Дополнение. Рекомендую посмотреть видео про еще один случай обрыва вторичной цепи ТТ:

Запомните главное и золотое Правило! Трансформатор тока работает в режиме короткого замыкания, т.е. его вторичная обмотка должна быть всегда замкнута накоротко или через малое сопротивление подключенных к ней устройств и приборов.

Источник

Оцените статью
Adblock
detector