От каких аварийных режимов защищает тепловое реле электрический двигатель

Выбор типа защиты электродвигателей

В процессе эксплуатации различных электроустановок возникают аварийные режимы. Основные из них — короткие замыкания, технологические перегрузки, неполнофазные режимы, заклинивание ротора электрической машины.

Аварийные режимы работы электродвигателей

Под коротким замыканием понимается режим, когда ток перегрузки превышает номинальный в несколько раз. Перегрузочный режим характеризуется превышением тока в 1,5 — 1,8 раза. Технологические перегрузки приводят к увеличению температуры обмоток электродвигателя выше допустимой, постепенному разрушению ее и выходу из строя.

Неполнофазный режим (потеря фазы) возникает в случае перегорания предохранителя в фазе, обрыва провода, нарушения контакта. При этом происходит перераспределение токов, по обмоткам электродвигателя начинают протекать повышенные токи, не исключается остановка механизма и выход электрической машины из строя. Наиболее чувствительны к неполнофазным режимам электродвигатели малой и средней мощности, т. е., которые наиболее часто используются в промышленности и сельском хозяйстве.

Заклинивание ротора электрической машины может возникнуть при разрушении подшипника, заклинивании рабочей машины. Это наиболее тяжелый режим. Скорость нарастания температуры обмотки статора достигает 7 — 10 °С в секунду, через 10 — 15 с температура двигателя выходит за допустимые пределы. Наиболее опасен такой режим для двигателей малой и средней мощности.

Наибольшее количество аварийных выходов из строя электродвигателей обусловлено технологическими перегрузками, заклиниванием, разрушением подшипникового узла . До 15 % отказов происходит из-за обрыва фаз и возникновения недопустимой несимметрии напряжений.

Виды электрических аппаратов для защиты электродвигателей

Для защиты электрооборудования от аварийных режимов серийно выпускаются автоматические выключатели, предохранители, тепловые реле, устройства встроенной температурной защиты, фазочувствительная защита и другие аппараты.

При выборе типа защиты учитываются конкретные условия эксплуатации, быстродействие, надежность, удобство эксплуатации, экономические показатели.

В электроустановках до 1000 В защита от коротких замыканий обычно осуществляется плавкими предохранителями или электромагнитными расцепителями максимального тока, встроенными в автоматические выключатели .

Помимо этого, защита от коротких замыканий электродвигателей может осуществляться токовым реле , включенным в одну из фаз статора непосредственно или через трансформатор тока и реле времени.

Защиту от перегрузок подразделяют на два типа: защиту прямого действия, реагирующую на превышение тока, и защиту косвенного действия, реагирующую на превышение температуры. Наиболее распространенным типом токовой защиты, используемой для защиты электродвигателей от перегрузок (в том числе и от заклинивания), являются тепловые релеле . Они выпускаются серии ТРН, ТРП, РТТ, РТЛ. Трехфазные тепловые реле РТТ и РТЛ защищают также от обрыва фазы.

Фазочувствительная защита (ФУЗ) защищает от обрыва фазы, заклинивания механизма, коротких замыканий, пониженного сопротивления изоляции электродвигателя.

Защита от перегрузок и заклинивания механизма может осуществляться также с помощью специальных предохранительных муфт . Указанный тип защиты используется на прессовом оборудовании. Для защиты от обрыва фаз серийно выпускаются реле обрыва фаз типа Е-511, ЕЛ-8, ЕЛ-10, современные электронные и микропроцессорные реле.

К защите косвенного действия относится и встроенная температурная защита УВТЗ , реагирующая не на значение тока, а на температуру обмотки электродвигателя, независимо от причины, вызвавшей нагрев. В настоящее время, для этих целей все чаще используются современные электронные и микропроцессорные тепловые реле, реагирующие на изменение сопротивления встроенных в обмотку статора электродвигателя терморезисторов.

Читайте также:  Реле зарядки зил 4331 где находится

Порядок выбора типа защиты для электродвигателей

При выборе типа защиты необходимо руководствоваться следующими положениями:

наиболее ответственные электроприемники, отказ в работе которых может привести к большому ущербу, подверженные систематическому загрязнению, или работающие в условиях повышенной температуры, а также с резкопеременной нагрузкой (дробилки, пилорамы, измельчители кормов) целесообразно защищать встроенной температурной защитой и автоматическими выключателями или предохранителями.

Защита маломощных электродвигателей (до 1,1 кВт), которые обслуживаются высококвалифицированным персоналом, может осуществляться тепловыми реле и предохранителями.

Защиту электродвигателей средней мощности (более 1,1 кВт), работающих без обслуживающего персонала, рекомендуется защищать фазочувствительными устройствами.

Указанные рекомендации основываются на результатах анализа работы аппаратов защиты в условиях аварийных режимов. При этом установлены следующие особенности функционирования защитных устройств.

При небольших перегрузках и длительных режимах работы надежно работают тепловые реле, фазочувствительная защита, встроенная температурная защита. Выбор предпочтительного аппарата в этом случае необходимо производить с учетом экономических показателей. При переменных нагрузках с периодом колебаний нагрузки, соизмеримым с постоянной нагрева двигателя, тепловые реле действуют ненадежно и следует применять встроенную температурную защиту или фазочувствительную защиту. При случайных нагрузках большей надежностью обладают защитные устройства, действующие в функции температуры, а не тока.

При включении электропривода в неполнофазную сеть по его обмоткам проходит ток, близкий к пусковому, и защитные аппараты срабатывают надежно. Но если обрыв фазы произошел после включения электродвигателя, то сила тока зависит от нагрузки. Тепловые реле в этом случае обладают значительной зоной нечувствительности и лучше применять фазочувствительную защиту и встроенную температурную защиту.

При затяжных пусках применение тепловых реле нежелательно. Если пуск осуществляется при пониженном напряжении, тепловое реле может ложно отключить электродвигатель.

При заклинивании ротора электродвигателя или рабочей машины ток в его обмотках в 5 — 6 раз превышает номинальный. Тепловые реле в этой ситуации должны в течение 1 — 2 с отключить электродвигатель. Однако температурная защита при перегрузках по току в 1,6 раза и выше имеет большую динамическую погрешность, поэтому электродвигатель может быть не отключен, возникнет недопустимый перегрев обмоток и резкое сокращение срока службы электрической машины. Тепловые реле и встроенная температурная защита при больших перегрузках работают с низкой эффективностью. Лучше в таких ситуациях использовать фазочувствительную защиту.

При применении современных тепловых реле РТТ и РТЛ частота отказов электрооборудования значительно ниже, чем при использовании реле типа ТРН, ТРП и в ряде случаев сравнима с частотой отказов при установке встроенной температурной защиты.

В настоящее время, для защиты особо важных электродвигателей применение находят современные универсальные микропроцессорные устройства защиты , совмещающие в себе все типы защиты и имеющие возможность гибкой настройки параметров срабатывания.

Область применения различных устройств защиты зависит от числа выходов электрооборудования из строя, размеров технологического ущерба при отключении, затрат на приобретение аппаратуры защиты. Для выбора предпочтительного варианта необходимо технико-экономическое сравнение.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Тепловая защита электродвигателя. Электротепловое реле.

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.

Читайте также:  Блок реле кристалл для грщ

Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.

1. Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Читайте также:  Реле зарядки drz 400

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

2. Принципиальные схемы включения электротеплового реле.

В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.

При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.

При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.

При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.

Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.

На фотографиях ниже показана часть монтажной схемы цепей управления:

Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.

При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.

И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.

От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.

При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».

Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.

И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.

Источник

Оцените статью
Adblock
detector