Почему электроэнергию передают под высоким напряжением

Почему передачу электроэнергии на расстояние выполняют на повышенном напряжении

Сегодня передачу электрической энергии на расстояние всегда выполняют на повышенном напряжении, которое измеряется десятками и сотнями киловольт. По всему миру электростанции различного типа генерируют электричество гигаваттами. Это электричество распределяется по городам и селам при помощи проводов, которые мы можем видеть например вдоль трасс и железных дорог, где они неизменно закреплены на высоких опорах с длинными изоляторами. Но почему передача всегда осуществляется на высоком напряжении? Об этом расскажем далее.

Представьте что вам необходимо передать по проводам электрическую мощность хотя бы в 1000 ватт на расстояние 10 километров в форме переменного тока с минимальными потерями, чтобы запитать мощный киловаттный прожектор. Что вы предпримете? Очевидно, что напряжение необходимо будет так или иначе преобразовывать, понижать или повышать при помощи трансформатора.

Допустим, источник (небольшой бензиновый генератор) выдает напряжение 220 вольт, при этом в вашем распоряжении есть двухжильный медный кабель с сечением каждой жилы по 35 кв.мм. На 10 километров такой кабель даст активное сопротивление около 10 Ом.

Нагрузка мощностью 1 кВт имеет сопротивление около 50 Ом. И что если передаваемое напряжение оставить на уровне 220 вольт? Это значит, что шестая часть напряжения придется (упадет) на передающий провод, который окажется под напряжением около 36 вольт. И вот, порядка 130 Вт потеряно по пути — просто подогрели передающие провода. А на прожекторе получим не 220 вольт, а 183 вольта. КПД передачи оказалось 87%, и это пренебрегая еще индуктивном сопротивлении передающих проводов.

Дело в том, что активные потери в передающих проводах всегда прямо пропорциональны квадрату тока (см. Закон Ома). Следовательно если передачу той же самой мощности осуществить при более высоком напряжении, то падение напряжения на проводах не окажется столь губительным фактором.

Допустим теперь иную ситуацию. У нас имеется тот же самый бензиновый генератор, выдающий 220 вольт, те же 10 километров провода с активным сопротивлением 10 Ом, и тот же самый прожектор на 1кВт, но плюс ко всему еще есть два киловаттных трансформатора, первый — повышающий 220-22000 вольт, расположенный возле генератора и подключенный к нему обмоткой низкого напряжения, а обмоткой высокого напряжения — присоединен к передающим проводам. А второй трансформатор, на расстоянии 10 километров, — понижающий 22000-220 вольт, к обмотке низкого напряжения которого присоединен прожектор, а обмотка высокого напряжения — получает питание от передающих проводов.

Итак, при мощности нагрузки 1000 ватт при напряжении 22000 вольт, ток в передающем проводе (здесь можно обойтись без учета реактивной составляющей) составит всего 45мА, а значит на нем упадет уже не 36 вольт, (как было без трансформаторов) а всего 0,45 вольт! Потери составят уже не 130 Вт, а всего 20 мВт. КПД такой передачи на повышенном напряжении составит 99,99%. Вот почему передача на повышенном напряжении более эффективна.

В нашем примере ситуация рассмотрена грубо, и использовать дорогие трансформаторы для такой простой бытовой цели было бы конечно нецелесообразным решением. Но в масштабах стран и даже областей, когда речь идет о расстояниях в сотни километров и об огромных передаваемых мощностях, стоимость электроэнергии, которая могла бы потеряться, тысячекратно превышает любые затраты на трансформаторы. Вот почему при передаче электроэнергии на расстояние всегда применяется повышенное напряжение, измеряемое сотнями киловольт — чтобы снизить потери мощности при передаче.

Непрерывный рост электропотребления, концентрация генерирующих мощностей на электростанциях, сокращение свободных от застройки территорий, ужесточение требований по защите окружающей среды, инфляция и рост цен на землю, а также ряд других факторов настоятельно диктуют повышение пропускной способности линий электропередачи.

Конструкции различных линий электропередачи рассмотрены здесь: Устройство различных ЛЭП разного напряжения

Объединение энергетических систем, увеличение мощности электрических станций и систем в целом сопровождаются увеличением расстояний и потоков мощности, передаваемых по линии электропередачи. Без мощных линий электропередачи высокого напряжения невозможна выдача энергии от современных крупных электростанций.

Читайте также:  Регулятор напряжения для самогонного аппарата с алиэкспресс

Единая энергетическая система позволяет обеспечить передачу резервной мощности в те районы, где имеется в ней потребность, связанная с ремонтными работами или аварийными условиями, появится возможность передавать избыток мощности с запада на восток или наоборот, обусловленный поясным сдвигом во времени.

Благодаря дальним передачам стало возможным строительство сверхмощных электростанций и полное использование их энергии.

Капиталовложения на передачу 1 кВт мощности на заданное расстояние при напряжении 500 кВ в 3,5 раза ниже, чем при напряжении 220 кВ, и на 30 — 40% ниже, чем при 330 — 400 кВ.

Стоимость передачи 1 кВт•ч энергии при напряжении 500 кВ вдвое ниже, чем при напряжении 220 кВ, и на 33 — 40% ниже, чем при напряжении 330 или 400 кВ. Технические возможности напряжения 500 кВ (натуральная мощность, расстояние передачи) в 2 — 2,5 раза превышают возможности напряжения 330 кВ и в 1,5 раза — напряжения 400 кВ.

Линия напряжением 220 кВ может передать мощность 200 — 250 МВт на расстояние до 200 — 250 км, линия 330 кВ — мощность 400 — 500 МВт на расстояние до 500 км, линия 400 кВ — мощность 600 — 700 МВт на расстояние до 900 км. Напряжение 500 кВ обеспечивает передачу мощности 750 — 1 000 МВт по одной цепи на расстояние до 1 000 — 1 200 км.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Источник

Зачем нужно высокое напряжение?

Задумывались ли вы, зачем для передачи электроэнергии на большое расстояние нужно такое высокое напряжение, заставляющее строить высокие башни-опоры и гигантские изоляторы? Почему бы не передавать электричество низкого напряжения по сверхпрочным проводам, протянутым между скромными сооружениями или даже под землей? Тому есть причина.

Для заданной мощности электроэнергии, потребляемой конечными потребителями (нагрузка сети), сила тока в линиях электропередачи с ростом напряжения понижается. Уменьшение силы тока сокращает потери электроснабжения в линии электропередачи. Обратившись к формуле из школьного курса физики, вы поймете почему:

где Р — мощность в ваттах, Е — напряжение в вольтах, а / — сила тока в амперах. Из нее следует, что на данном уровне мощности сила тока обратно пропорциональна напряжению:

Потери электроснабжения (т. е. потери мощности) в линии электропередачи пропорциональны квадрату силы тока. Эти потери — мощности, которые не доходят до конечных потребителей; они уходят на нагрев проводов. Это соотношение описывается следующей формулой:

где Р — мощность в ваттах, I — сила тока в амперах, a R — сопротивление провода в омах. Конструкторы не могут изменить сопротивление провода или мощность нагрузки сети, но они могут довести до максимума напряжение, минимизируя таким образом «лишний» ток, который вынуждена нести линия передачи для обеспечения потребности сети.

Предположим, напряжение, подаваемое в сеть, повышается десятикратно, а потребительские нагрузки в сети постоянны. Рост напряжения уменьшает силу тока в десять раз, и в результате потери мощности сокращаются в(1/10)2, т. е. в сто раз! Разумеется, использовать повышающий трансформатор в одном месте проще и дешевле, чем протягивать на многие километры провода, тяжесть которых (без трансформатора) оказывалась бы в сто раз больше.

Вид высоковольтной линии переменного тока под напряжением, скажем, 500 000 вольт страшноват? Возможно. Но угрозу здоровью, исходящую от линий электропередачи (реальный уровень этой угрозы — вопрос спорный), на самом деле несут магнитные поля, генерируемые этими линиями. Сила этих колеблющихся полей прямо пропорциональна силе тока, а не напряжению. Если бы такая линия, проходящая по вашему пригороду, имела напряжение в 500 вольт, а не в 500 000, магнитные поля, окружающие ее, были бы гораздо интенсивнее и потенциальная угроза здоровью, соответственно, выше.

Источник

Почему электрическую энергию передают на большие расстояния под высоким напряжением?

Главная причина потерь при передаче электроэнергии — нагревание проводов, то есть превращение электрической энергии во внутреннюю.

Напомним, что согласно закону Джоуля-Ленца при прохождении тока в проводнике выделяется количество теплоты где — сила тока, — сопротивление проводника, — время прохождения тока (см. § 10. Работа и мощность постоянного тока). Следовательно, чтобы уменьшить нагревание проводов, надо уменьшать их сопротивление и силу тока в них.

Читайте также:  Меры безопасности при работе указателем напряжения

Чтобы уменьшить сопротивление проводов, увеличивают их диаметр, но очень толстые провода слишком тяжелы и, кроме того, на них пошло бы много дорогой меди. Так что «главный резерв» борьбы с потерями — уменьшение силы тока в проводах.

Силу тока действительно можно уменьшить, причем многократно, но — ценой повышения напряжения во столько же раз, так как передаваемая потребителю мощность равна произведению где — напряжение в сети.

При заданной мощности сила тока Подставляя это выражение в выражение получаем откуда следует, что при заданной передаваемой мощности и заданном сопротивлении проводов «тепловые потери» в проводах обратно пропорциональны квадрату напряжения

А это значит, что при повышении напряжения в тысячу раз потери на нагревание проводов уменьшаются в миллион раз!

Источник

Почему электроэнергию передают под высоким напряжением?

Рассмотрим систему электроснабжения, представляющую из себя группу электротехнических устройств для передачи, преобразования, распределения и потребления электрической энергии.

Снабжение электроэнергией осуществляется по стандартным схемам. Например, на рис. ниже представлена радиальная однолинейная схема электроснабжения для передачи электроэнергии от понижающей подстанции электростанции до потребителя электроэнергии напряжением 380 В.

Радиальная однолинейная схема электроснабжения

От электростанции электроэнергия напряжением 110. 750 кВ передается по линиям электропередач (ЛЭП) на главные или районные понижающие подстанции, на которых напряжение снижается до 6. 35 кВ. От распределительных устройств это напряжение по воздушным или кабельным ЛЭП передается к трансформаторным подстанциям, расположенным в непосредственной близости от потребителей электрической энергии. На подстанции величина напряжения снижается до 380 В и по воздушным или кабельным линиям поступает непосредственно к потребителю электроэнергии в доме. При этом линии имеют четвертый (нулевой) провод 0, позволяющий получить фазное напряжение 220 В, а также обеспечивать защиту электроустановок.

Такая схема позволяет передать электроэнергию потребителю с наименьшими потерями. Поэтому на пути от электростанции к потребителям электроэнергия трансформируется с одного напряжения на другое. Упрощенный пример трансформации для небольшого участка энергосистемы показан на следующем рисунке.

Пример трансформации электроэнергии при передаче потребителю

Зачем применяют высокое напряжение? Расчет сложен, но ответ прост. Для снижения потерь на нагрев проводов при передаче на большие расстояния.

Источник

Почему электроэнергию передают под высоким напряжением?

Рассмотрим систему электроснабжения, представляющую из себя группу электротехнических устройств для передачи, преобразования, распределения и потребления электрической энергии.

Снабжение электроэнергией осуществляется по стандартным схемам. Например, на рис. ниже представлена радиальная однолинейная схема электроснабжения для передачи электроэнергии от понижающей подстанции электростанции до потребителя электроэнергии напряжением 380 В.

Радиальная однолинейная схема электроснабжения

От электростанции электроэнергия напряжением 110. 750 кВ передается по линиям электропередач (ЛЭП) на главные или районные понижающие подстанции, на которых напряжение снижается до 6. 35 кВ. От распределительных устройств это напряжение по воздушным или кабельным ЛЭП передается к трансформаторным подстанциям, расположенным в непосредственной близости от потребителей электрической энергии. На подстанции величина напряжения снижается до 380 В и по воздушным или кабельным линиям поступает непосредственно к потребителю электроэнергии в доме. При этом линии имеют четвертый (нулевой) провод 0, позволяющий получить фазное напряжение 220 В, а также обеспечивать защиту электроустановок.

Такая схема позволяет передать электроэнергию потребителю с наименьшими потерями. Поэтому на пути от электростанции к потребителям электроэнергия трансформируется с одного напряжения на другое. Упрощенный пример трансформации для небольшого участка энергосистемы показан на следующем рисунке.

Пример трансформации электроэнергии при передаче потребителю

Зачем применяют высокое напряжение? Расчет сложен, но ответ прост. Для снижения потерь на нагрев проводов при передаче на большие расстояния.

Источник

Зачем поднимают напряжение для передачи электричества на большие расстояния?

Тема эта довольно избитая, но всё же я предложу на суд читателей и свой вариант статьи. Зачем? Обычно люди хорошо понимают объяснения, написанные людьми с созвучным им способом мышления. Поэтому легко понятное для одного человека описание может ввести в ступор другого при абсолютно равном интеллекте и опыте обоих. Поэтому, чем больше будет разных вариантов изложений, тем лучше.

Как обычно, я не буду упоминать лишних деталей, не относящихся к сути, и мешающих восприятию основного материала. Допущу некоторые упрощения. Статья не для профессионалов, конечно.

Читайте также:  Как сделать дверь под напряжением

На примере розетки

Итак, генераторы на электростанциях вырабатывают электрическую энергию. Её передают по линиям электропередачи в наши дома, где мы её потребляем. Мы привыкли, что потребляемая нами электроэнергия базируется на напряжении 230 вольт и токе, обычно не превышающим 16 ампер на розетку (в зависимости от потребляемой мощности прибора, который мы воткнём в неё). Если мы воткнём в розетку нагреватель, вызывающий в сети ток 16 ампер, то это будет означать, что мы потребляем из сети мощность 230 В * 16 А = 3680 ватт. Запомним — мы потребляем не напряжение и не ток, а мощность. То есть, не вольты и не амперы, а ватты. Собственно, их нам и считает счётчик электроэнергии.

Ток 16 ампер, проходя от ввода в дом до розетки по проводам сечением, скажем, 2,5 мм², нагревает их. Чем больше ток или меньше сечение провода, тем больше нагрев, потому что несущим ток электронам приходится протискиваться через атомы проводника и постоянно соударяться с ними, что вызывает их (атомов) тепловые колебания (тепловые колебания кристаллической решётки, в которую выстроены эти атомы). Большему току (т.е. большему количеству электронов) нужно большее сечение провода, чтобы соударения распределялись в большем объёме и не вызывали перегрев.

Провод (особенно малого сечения) сам по себе является сопротивлением, и работает, как тот же нагреватель. То есть, при нагреве провода мы теряем на нём часть мощности, которую мы хотели бы довести до нагревателя.

Что можно сделать, чтобы передать ту же мощность от ввода в дом до розетки через то же сечение с меньшими потерями? Поскольку нагрев провода даёт именно проходящий по проводу ток, а не толкающее его напряжение, то, очевидно, нам и надо снизить ток, скомпенсировав это снижение поднятием напряжения.

Предположим, мы подняли на вводе в дом трансформатором напряжение с 230 вольт до 1000 вольт. Для передачи той же мощности нам достаточно будет тока 3680 Вт / 1000 В = 3,68 ампер вместо 16! Проверяем: 1000 В * 3,68 А = 3680 ватт. Но мы не можем просто так воткнуть наш нагреватель в 1000 вольт, поскольку его сопротивление таково, что сразу же вызовет огромный ток в сети, куда больше 16 А. Нам надо снова понизить напряжение перед розеткой до 230 вольт. То есть, поставить понижающий трансформатор. После этого мы сможем запитать нагреватель, и при этом экономить на снижении потерь в проводах внутри дома.

В магистральных линиях

Рассмотренная в предыдущей главе ситуация с поднятием напряжения на вводе в дом и опусканием его у каждой розетки, естественно, экономически нецелесообразна. Понадобится несколько трансформаторов, да и потери в самих трансформаторах превысят выигрыш от уменьшения потерь в проводах. Проще уж, наверное, положить провод толще или плюнуть на эти копеечные потери.

Однако, когда речь идёт о линиях длиной в километры, а то и в сотни километров — вот тогда потери на таких длинах настолько велики, что окупается и установка трансформаторов, и более высокие опоры с более эффективными изоляторами, да и все остальные издержки тоже. Чем длиннее линия, тем меньше ток для неё желателен, и тем выше напряжение для неё нужно.

Для непосредственного питания домов в посёлках и городах используются трансформаторные подстанции на 10/0,4 кВ. К ним подходит напряжение 10 кВ (10 000 В), а выходит на дома 0,4 кВ (400 В). При этом речь идёт о межфазном напряжении. Раньше те же посёлки запитывались через трансформаторы 6/0,38 кВ, но сейчас линии 6 кВ считаются устаревшими. Переход с 6 на 10 кВ позволил по тем же старым кабелям передавать к посёлкам бо́льшую мощность в связи с возрастанием энергонасыщенности домов.

К трансформаторам, питающим конечных потребителей, также подводятся линии с напряжениями 20 и 35 кВ.

Существуют линии на 110, 220, 330, 500 и 750 кВ для связи вышестоящих энергообъектов. Линия на 1150 кВ у нас тоже была, но в настоящий момент работает только на 500 кВ. Потери на коронные разряды при 1150 вольтах оказались слишком большими.

Источник

Оцените статью
Adblock
detector