Под действием каких напряжений происходит разрушение древесины при скалывании

Прочность древесины при сдвиге

Для испытаний на скалывание применяют образец, форма и размеры которого показаны на рис. 60 (слева). В каждом образце с двух сторон (по линии ожидаемого скалывания) с точностью до 0,1 мм измеряют толщину образца b и длину скалывания l; из каждой пары измерений вычисляется среднее.

Рис. 59. Случаи сдвига древесины: а — скалывание вдоль волокон; б — скалывание поперек волокон; в — перерезание древесины поперек волокон.

Рис.60. Форма и размеры образцов для испытаний на скалывание вдоль и поперек волокон (слева и посредине); схема испытания на перерезание поперек волокон (справа): 1 — образец; 2 — нож.

Для испытания образец укрепляют в приборе. Прибор с образцом помещают на опорную платформу машины; нагружение проводится через стальной брусочек на верхний торец образца равномерно со средней скоростью 1250±250 кГ/мин. Образец доводят до разрушения. По шкале машины отсчитывают максимальную нагрузку Рmах. Предел прочности вычисляют с точностью 1 кГ/см 2 по формуле:

Значения пределов прочности при скалывании вдоль волокон, полученные при использовании прибора, оказываются завышенными в среднем на 15% в результате трения образца об опорную стенку и подвижную опору прибора. Древесина обладает невысокой прочностью при скалывании вдоль волокон; при этом древесина лиственных пород лучше сопротивляется скалыванию по сравнению с древесиной хвойных пород: прочность лиственных пород примерно в 1,5 раза выше. Более высокая прочность (на 10—30%) древесины лиственных пород наблюдается при тангенциальном скалывании по сравнению с радиальным; это превышение тем больше, чем лучше развиты в древесине сердцевинные лучи (бук). Для древесины хвойных пород прочность при скалывании в обоих случаях надо считать примерно одинаковой.

По сравнению с прочностью при сжатии вдоль волокон прочность при скалывании составляет для древесины хвойных пород 1/5 — 1/7, а для древесины лиственных пород 1/4 — 1/5, в среднем для всех пород это отношение, по имеющимся данным, можно принять равным около 1/5. Несмотря на невысокую прочность, древесина довольно часто работает на скалывание, например при сопряжении стропильной ноги с затяжкой.

Прочность при скалывании вдоль волокон подвержена сильной изменчивости, что можно объяснить влиянием малейших отклонений от правильного расположения волокон (свилеватостью, мелкими искривлениями волокон и т. д.). В табл. 38 приведены данные о прочности при скалывании вдоль волокон древесины основных лесных пород.

Источник

Скалывание

Это напряженное состояние эле­мента на поверхности, воспринимающей нагрузку. Смятие древесины про­исходит вдоль волокон, поперек волокон и под углом. При стандартных ис­пытаниях на сжатие вдоль волокон малых образцов, имеющих хорошо при­торцованные поверхности, обычно не наблюдается снижения сопротивле­ния в результате смятия торцов. Для практических целей нормы проекти­рования не дают различие между прочностью на сжатие вдоль волокон и смятие вдоль волокон. Таким образом, предел прочности смятия вдоль во­локон принимается также, как и Rс вр = 44 МПа.

Древесина сжатию и смятию поперек волокон сопротивляется значи­тельно слабее, чем сжатию вдоль волокон. Предел прочности смятию по­перек волокон находится в диапазоне Rсм вр =2,8 — 4,5 МПа. Предел прочности как характеристика теряет свою опреде­ленность, поскольку при увеличении нагрузки происходит спрессовыва­ние древесины без нарушения ее сплошности. Поэтому за нормируемый предел прочности принимаются значения допустимых в эксплуатации де­формаций.

Для смятия поперек волокон хвойных пород наблюдается две типичные диаграммы σε (рис. 1.7).

Диаграмма смятия поперек волокон в радиаль­ном направлении характеризуется тремя этапами. На первом этапе (АВ) происходит сжатие годовых слоев ранней древесины, и участок диаграм­мы почти прямолинейный. Второй этап (ВС) характеризуется смятием обо­лочек клеток ранней древесины.

Этот этап работы древесины не требует больших усилий, и на диаграмме наблюдается участок, слегка наклоненный к оси абсцисс. Третий этап (СД) протекает за счет сжатия клеток поздней древесины, т.е. уплотнения древесного вещества. Поэтому древесина вновь приобретает способность сопротивляться действию нагрузки, и, как правило, разрушения древесины не происходит.

Читайте также:  Напряжение гармонического испытательного сигнала измеренное в канале передачи

При сжатии поперек волокон в тангентальном направлении характерна одноэтапная диаграмма. Усилия воспринимаются одновременно ранними и поздними зонами годичных слоев. Нагружение завершается зачастую раз­рушением древесины.

У древесины лиственных пород при сжатии, как в радиальном, так и в тангентальном направлениях, имеет место диаграмма с тремя этапами.

Сопротивление древесины на местное смятие выше, чем при смятии по всей поверхности. Повышение происходит в основном за счет распределе­ния напряжений на большую поверхность в направлении вдоль волокон, благодаря поддерживающему влиянию не нагруженных соседних волокон, работающих при этом на растяжение.

Скалывание является наиболее неблагоприятным, хрупким характером разрушения древесины и, тем не менее, наименее изученным явлением, не доведенным до корректной методики определения предела прочности. Существующая ныне методика испытания образцов на скалыва­ние, например, не учитывает наличие изгибающего момента от действия приложенного усилия, вызывающие дополнительные растягивающие на­пряжения по площадке скалывания.

В реальных конструкциях в опорных зонах, где чаще всего происходит скалывание, имеет место сложное напряженное состояние (различное соче­тание касательных и нормальных напряжений) неадекватное напряженному состоянию стандартных образцов при испытании. Поэтому в нормах проек­тирования расчетные сопротивления на скалывание вдоль волокон даны применительно к виду конструкции или узла на основании локальных ис­следований. В отличие от других видов напряженного состояния влияние пороков на скалывание сказывается незначительно. Предел прочности ра­вен Rск вр = 6 – 7 МПа . Разница между прочностью на скалывание в танген­циальной и радиальной плоскостях незначительна.

Различают два вида скалывания древесины: одностороннее и промежу­точное. В первом случае силы скалывания расположены по одну сторону от площадки скалывания, что приводит к неравномерному распределению по ее длине скалывающих напряжений τ (рис. 1.9). Процесс скалывания в этом случае обычно сопровождается расщеплением или отрыванием воло­кон. Причиной тому служит момент М =Т× е.

Во втором случае площадка скалывания находится в промежутке между двумя действующими на нее силами, в результате чего напряжения распре­деляются по длине площадки скалывания более равномерно.

Рис. 1.9. Виды скалывания: а и б — одностороннее скалывание; в — промежуточное скалывание.

Для инженерных методов расчета часто используют формулу для опре­деления расчета сопротивления на скалывание (рис. 1.9). Как показали ис­следования в МИСИ, эта формула имеет запас прочности.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Справочник | Лесоматериалы | Деревянное строительство

Вы здесь

Механические свойства древесины

К механическим свойствам древесины относятся: прочность, твёрдость, жёсткость, ударная вязкость и другие.

Прочность — способность древесины сопротивляться разрушению от механических усилий, характеризующихся пределом прочности. Прочность древесины зависит от направления действия нагрузки, породы дерева, плотности, влажности, наличия пороков.

Существенное влияние на прочность древесины оказывает только связанная влага, содержащаяся в клеточных оболочках. При увеличении количества связанной влаги прочность древесины уменьшается (особенно при влажности 20-25%). Дальнейшее повышение влажности за предел гигроскопичности (30%) не оказывает влияния на показатели прочности древесины. Показатели пределов прочности можно сравнивать только при одинаковой влажности древесины. Кроме влажности на показатели механических свойств древесины оказывает влияние и продолжительность действия нагрузок.

Вертикальные статические нагрузки — это постоянные или медленно возрастающие. Динамические нагрузки, наоборот, действуют кратковременно. Нагрузку, разрушающую структуру древесины, называют разрушительной. Прочность, граничащую с разрушением, называют пределом прочности древесины, её определяют и измеряют образцами древесины. Прочность древесины измеряют в Па/см2 (кгс на 1 см2) поперечного сечения образца в месте разрушения, (Па/см2 (кг с/см2).

Сопротивление древесины определяют как вдоль волокон, так и в радиальном и тангенциальном направлении. Различают основные виды действий сил: растяжение, сжатие, изгиб, скалывание. Прочность зависит от направления действия сил, породы дерева, плотности древесины, влажности и наличия пороков. Механические свойства древесины приведены в таблицах.

Чаще всего древесина работает на сжатие, например, стойки и опоры. Сжатие вдоль волокон действует в радиальном и тангенциальном направлении (рис. 1).

Предел прочности на растяжение. Средняя величина предела прочности при растяжении вдоль волокон для всех пород составляет 1300 кгс/см2. На прочность при растяжении вдоль волокон оказывает большое влияние строение древесины. Даже небольшое отклонение от правильного расположения волокон вызывает снижение прочности.

Читайте также:  Напряжение бортовой сети корабля

Прочность древесины при растяжении поперёк волокон очень мала и в среднем составляет 1/20 часть от предела прочности при растяжении вдоль волокон, то есть 65 кгс/см2. Поэтому древесина почти не применяется в деталях, работающих на растяжение поперёк волокон. Прочность древесины на растяжение поперёк волокон имеет значение при разработке режимов резания и режимов сушки древесины.

Рис. 1. Испытание механических свойств древесины на сжатие: а — вдоль волокон; б — поперек волокон — радиально; в — поперек волокон — тангенциально.

Предел прочности при сжатии. Различают сжатие вдоль и поперёк волокон. При сжатии вдоль волокон деформация выражается в небольшом укорочении образца. Разрушение при сжатии начинается с продольного изгиба отдельных волокон, которое во влажных образцах из мягких и вязких пород проявляется как смятие торцов и выпучивание боков, а в сухих образцах и в твёрдой древесине вызывает сдвиг одной части образца относительно другой.

Средняя величина предела прочности при сжатии вдоль волокон для всех пород составляет 500 кгс/см2.

Прочность древесины при сжатии поперёк волокон ниже, чем вдоль волокон примерно в 8 раз. При сжатии поперёк волокон не всегда можно точно установить момент разрушения древесины и определить величину разрушающего груза.

Древесину испытывают на сжатие поперёк волокон в радиальном и тангенциальном направлениях. У лиственных пород с широкими сердцевинными лучами (дуб, бук, граб) прочность при радиальном сжатии выше в полтора раза, чем при тангенциальном; у хвойных — наоборот, прочность выше при тангенциальном сжатии.

Рис. 2. Испытание механических свойств древесины на изгиб.

Предел прочности при статическом изгибе. При изгибе, особенно при сосредоточенных нагрузках, верхние слои древесины испытывают напряжение сжатия, а нижние — растяжения вдоль волокон. Примерно посередине высоты элемента проходит плоскость, в которой нет ни напряжения сжатия, ни напряжения растяжения. Эту плоскость называют нейтральной; в ней возникают максимальные касательные напряжения. Предел прочности при сжатии меньше, чем при растяжении, поэтому разрушение начинается в сжатой зоне. Видимое разрушение начинается в растянутой зоне и выражается в разрыве крайних волокон. Предел прочности древесины зависит от породы и влажности. В среднем для всех пород прочность при изгибе составляет 1000 кгс/см2, то есть в 2 раза больше предела прочности при сжатии вдоль волокон.

Рис. 3. Сдвиг древесины: а — вдоль волокон; б — перпендикулярно волокнам.
Рис. 4. Сдвиг деталей: а — обыкновенный; б — двойной.

Прочность древесины при сдвиге. Внешние силы, вызывающие перемещение одной части детали по отношению к другой, называют сдвигом. Различают три случая сдвига: скалывание вдоль волокон, поперёк волокон и перерезание.

Прочность при скалывании вдоль волокон составляет 1/5 часть от прочности при сжатии вдоль волокон. У лиственных пород, имеющих широкие сердцевинные лучи (бук, дуб, граб), прочность на скалывание по тангенциальной плоскости на 10-30% выше, чем по радиальной.

Предел прочности при скалывании поперёк волокон примерно в два раза меньше предела прочности при скалывании вдоль волокон. Прочность древесины при перерезании поперёк волокон в четыре раза выше прочности при скалывании.

Рис. 5. Направление сил в деревянной конструкции, находящейся под нагрузкой: 1 — сдвиг на скалывание; 2 — сжатие; 3 — растяжение; 4 — изгиб; 5 — сжатие.

Твёрдость — это свойство древесины сопротивляться внедрению тела определённой формы. Твёрдость торцовой поверхности выше твёрдости боковой поверхности (тангенциальной и радиальной) на 30% у лиственных пород и на 40% у хвойных. По степени твёрдости все древесные породы можно разделить на три группы: 1) мягкие — торцовая твёрдость 40 МПа и менее (сосна, ель, кедр, пихта, можжевельник, тополь, липа, осина, ольха, каштан); 2) твёрдые — торцовая твёрдость 40,1-80 МПа (лиственница, сибирская берёза, бук, дуб, вяз, ильм, карагач, платан, рябина, клён, лещина, орех грецкий, хурма, яблоня, ясень); 3) очень твёрдые — торцовая твёрдость более 80 МПа (акация белая, берёза железная, граб, кизил, самшит, фисташки, тис).

Читайте также:  Реле напряжения ставить до автомата или после него

Твёрдость древесины имеет существенное значение при обработке её режущими инструментами: фрезеровании, пилении, лущении, а также в тех случаях, когда она подвергается истиранию при устройстве полов, лестниц перил.

Твёрдость древесины

Эбеновое дерево

Акация белая

Вяз гладкий

Орех грецкий

Тиковое дерево

Ирокко (камбала)

Лиственница

Клён полевой

Клен остролистый

Сосна корейская

Ятоба (мерил)

Свитения (махагони)

Порода дерева Твердость, МПа (кгс/см 2 )
для поверхности поперечного разреза для поверхности радиального разреза для поверхности тангенциального разреза
Липа 19,0(190) 16,4(164) 16,4(164)
Ель 22,4(224) 18,2(182) 18,4(184)
Осина 24,7(247) 17,8(178) 18,4(184)
Сосна 27,0(270) 24,4(244) 26,2(262)
Лиственница 37,7(377) 28,0(280) 27,8(278)
Береза 39,2(392) 29,8(298) 29,8(298)
Бук 57,1 (571) 37,9(379) 40,2(402)
Дуб 62,2(622) 52,1(521) 46,3(463)
Граб 83,5(835) 61,5(615) 63,5(635)

Ударная вязкость характеризует способность древесины поглощать работу при ударе без разрушения и определяется при испытаниях на изгиб. Ударная вязкость у древесины лиственных пород в среднем в 2 раза больше, чем у древесины хвойных пород. Ударную твёрдость определяют, сбрасывая стальной шарик диаметром 25 мм с высоты 0,5 м на поверхность образца, величина которого тем больше, чем меньше твёрдость древесины.

Износостойкость — способность древесины сопротивляться износу, т.е. постепенному разрушению её поверхностных зон при трении. Испытания на износостойкость древесины показали, что износ с боковых поверхностей значительно больше, чем с поверхности торцевого разреза. С повышением плотности и твёрдости древесины износ уменьшился. У влажной древесины износ больше, чем у сухой.

Способность древесины удерживать металлические крепления: гвозди, шурупы, скобы, костыли и др. — важное её свойство. При забивании гвоздя в древесину возникают упругие деформации, которые обеспечивают достаточную силу трения, препятствующую выдёргиванию гвоздя. Усилие, необходимое для выдёргивания гвоздя, забитого в торец образца, меньше усилия, прилагаемого к гвоздю, забитому поперёк волокон. С повышением плотности сопротивление древесины выдергиванию гвоздя или шурупа увеличивается. Усилия, необходимые для выдёргивания шурупов (при прочих равных условиях), больше, чем для выдёргивания гвоздей, так как в этом случае к трению присоединяется сопротивление волокон перерезанию и разрыву.

Основные технические свойства различных древесных пород

Порода дерева Коэффициент усушки, % Механическая прочность для древесины с 15 %-ной влажностью, МПа (кгс/см 2 )
в радиальном направлении в тангенциальном направлении на сжатие вдоль волокон на изгиб скалывание
в радиальной плоскости в тангециальной плоскости
Хвойные древесные породы
Сосна 0,18 0,33 43,9 79,3 6,9(68) 7,3(73)
Ель 0,14 0,24 42,3 74,4 5,3(53) 5,2(52)
Лиственница 0,22 0,40 51,1 97,3 8,3(83) 7,2(72)
Пихта 0,9 0,33 33,7 51,9 4,7(47) 5,3(53)
Твердолиственные древесные породы
Дуб 0,18 0,28 52,0 93,5 8,5(85) 10,4(104)
Ясень 0,19 0,30 51,0 115 13,8(138) 13,3(133)
Береза 0,26 0,31 44,7 99,7 8,5(85) 11(110)
Клен 0,21 0,34 54,0 109,7 8,7(87) 12,4(124)
Ильм 0,22 0,44 48,6 105,7 13,8(138)
Вяз 0,15 0,32 38,9 85,2 7(70) 7,7(77)
Мягколиственные древесные породы
Осина 0,2 0,32 37,4 76,6 5,7(57) 7,7(77)
Липа 0,26 0,39 39 68 7,3(73) 8(80)
Черная ольха 0,16 0,23 36,8 69,2
Черная осина 0,16 0,31 35,1 60 5,8(58) 7,4(74)

Нормативная сопротивляемость чистой древесины сосны и ели

Вид сопротивления и характеристика элементов, находящихся под нагрузкой МПа (кгс/см 2 )
Сопротивление статическому изгибу Rt:
  • для элементов, изготовленных из круглого леса с неослабленным поперечным сечением
16(160)
  • для элементов с прямоугольным сечением (ширина 14 см, высота — 50 см)
15(150)
  • для остальных элементов
13(130)
Сопротивляемость сжатию Rсж и поверхностному сжатию Rп.сж:
  • Rп.сж вдоль волокон
13(130)
  • в плоскости, параллельной направлению волокон Rп.сж.пл
1,8(18)
Сопротивление сжатию местной поверхности Rп.сж:
  • поперек волокон в опорных местах конструкции
2,4 (24)
  • в опорных зарубках
3(30)
  • под металлическими подкладками (если углы приложения силы 90…60°)
4(40)
Сопротивляемость растяжению вдоль волокон Rраст.в:
  • для элементов с неослабленным поперечным сечением
10(100)
  • для элементов с ослабленным поперечным сечением
8(80)
Сопротивляемость раскалыванию вдоль волокон Rраск.в 2,4(24)
Сопротивляемость раскалыванию поперек Rраск.вволокон 1,2(12)

Средние показатели сопротивления древесины выдергиванию гвоздей

Источник

Оцените статью
Adblock
detector