Расчет плавких вставок предохранителей по мощности трансформатора

Как рассчитать ток плавкой вставки для трансформатора по стороне ВН

В электрических сетях нередко возникают аварийные ситуации, которые могут вывести из строя дорогостоящее оборудование, одним из элементов которого является трансформатор. Для того чтобы защитить трансформатор от повреждения необходимо установить защиту от сверхтоков.

Высоковольтный предохранитель – один из вариантов защиты силового трансформатора от повреждения. Он осуществляет разрыв электрической цепи (разрушение плавкой вставки) при превышении тока выше допустимого значения (номинала предохранителя).

Высоковольтный предохранитель защитит обмотку трансформатора только в том случае, если он был правильно выбран по току. Рассмотрим, как рассчитать ток для плавкой вставки для трансформатора по стороне высокого напряжения (ВН).

При выборе предохранителя в первую очередь нужно учитывать класс напряжения: номинальное напряжение предохранителя должно быть равно классу напряжения электрической сети. Установка высоковольтного предохранителя на номинальное напряжение ниже напряжения питающей сети приведет к пробою или перекрытию изоляции, что в свою очередь приведет к междуфазному короткому замыканию. Также запрещается устанавливать предохранители на напряжение ниже номинального для предохранителя – это может привести к возникновению перенапряжений при коротком замыкании.

Выбор плавкой вставки по номинальному току отключения

Номинальный ток отключения (срабатывания) предохранителя должен быть не меньше максимального значения тока короткого замыкания для точки электрической сети, где будет установлен предохранитель. Для силового трансформатора это ток трехфазного замыкания на выводах обмотки высокого напряжения – места установки плавких предохранителей.

При расчете тока короткого замыкания учитывается наиболее тяжелый режим, с минимальным сопротивлением до места предполагаемого повреждения.

Токи короткого замыкания рассчитывают индивидуально с учетом всей схемы питающей электросети.

Предохранители для защиты трансформатора по стороне ВН выпускают на номинальный ток отключения (предельно отключаемый ток) в диапазоне 2,5-40 кА.

Если нет данных о величине токов короткого замыкания на участке электросети, то рекомендуется выбирать максимальное значение номинального тока отключения для плавкой вставки.

Выбор номинального тока плавкой вставки предохранителя

Высоковольтный предохранитель защищает обмотку высокого напряжения силового трансформатора не только от коротких замыканий, но и от перегрузки, поэтому при выборе плавкой вставки необходимо учитывать и номинальный рабочий ток.

При выборе номинального тока плавкой вставки нужно учитывать несколько факторов. Во-первых, силовой трансформатор в процессе работы может подвергаться кратковременным перегрузкам.

Во-вторых, при включении трансформатора возникают броски тока намагничивания, которые превышают номинальный ток первичной обмотки.

Также нужно обеспечить селективность работы с защитой, установленной на стороне низкого напряжения (НН) и на отходящих линиях потребителей. То есть в первую очередь должны срабатывать автоматические выключатели (предохранители) на стороне низкого напряжения отходящих линий, которые идут непосредственно на нагрузку к потребителям.

Если эта защита по той или иной причине не срабатывает, то должен сработать автомат (предохранитель) ввода стороны НН силового трансформатора. Предохранители на стороне ВН в данном случае — это резервирующая защита, которая должна срабатывать в случае перегрузки обмотки низкого напряжения и отказе защит со стороны НН.

Исходя из вышеперечисленных требований, плавкая вставка выбирается по двухкратному номинальному току обмотки высокого напряжения.

Таким образом, высоковольтные предохранители, установленные на стороне ВН, защищают от повреждений участок электрической цепи до ввода трансформатора, а также от внутренних повреждений самого силового трансформатора. А предохранители (автоматические выключатели) со стороны НН силового трансформатора защищают сам трансформатор от перегрузок выше допустимого предела, а также от коротких замыканий в сети низкого напряжения.

Номинальный ток обмоток силового трансформатора указывается в его паспортных данных.

Как рассчитать ток для плавкой вставки, если известна только номинальная мощность силового трансформатора?

Если известен тип трансформатора, то самый простой способ — найти ток, воспользовавшись справочными данными по силовым трансформаторам одного из производителей, так как все трансформаторы выпускают, как правило, по стандартному ряду номинальных мощностей и соответственно со схожими характеристиками.

Либо можно воспользоваться нижеприведенной таблицей рекомендуемых значений номинальных токов плавких вставок предохранителей для трехфазных силовых трансформаторов 6/0,4 и 10/0,4 кВ:

Предохранители для защиты трансформатора напряжения по стороне ВН

Трансформаторы напряжения 110 кВ и выше защищают только по стороне низкого напряжения автоматами или предохранителями. Для трансформаторов напряжения 6, 10 и 35 кВ расчет тока для плавкой вставки не производится.

Предохранитель для защиты трансформатора напряжения по стороне ВН выбирается только по классу напряжения. Для каждого класса напряжения выпускают специальные предохранители типа ПКН (ПН) – 6, 10, 35 (в зависимости от класса напряжения), они применяются исключительно для защиты трансформаторов напряжения.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Пример выбора плавких предохранителей

В предыдущей статье мы рассмотрели условия выбора плавких предохранителей. В этой же статье, речь пойдет непосредственно о примере выбора плавких предохранителей для асинхронных двигателей и распределительного щита ЩР1, согласно схеме рис.1 (схема дана в однолинейном изображении). Самозапуск двигателей исключен. Условия пуска легкие. Технические характеристики двигателей приведены в таблице 1.

Рис. 1 – Схема защиты плавкими предохранителями группы короткозамкнутых асинхронных двигателей

Таблица 1 – Технические характеристики двигателей 4АМ

Обозначение на схеме Тип двигателя Номинальная мощность Р, кВт КПД η,% Коэффициент мощности, cos φ Iп/Iн
4АМ112М2 7,5 87,5 0,88 7,5
4АМ100L2 5,5 87,5 0,91 7,5
4АМ160S2 15 88 0,91 7,5
4АМ90L2 3 84,5 0,88 6,5
4АМ180S2 15 88 0,91 7,5
Читайте также:  Что такое поток рассеивания в трансформаторе

1. Определяем номинальный ток для двигателя 1Д:

2. Определяем пусковой ток для двигателя 1Д:

3. Определяем номинальный ток плавкой вставки предохранителя FU2:

Iн.вс. > Iпуск.дв/k = 111,15/2,5 = 44,46 А;

где:
k =2,5 — коэффициент, учитывающий условия пуска двигателя, в моем случаем пуск двигателей легкий. Подробно выбор коэффициента, учитывающий условие пуска двигателя рассмотрен в статье: «Условия выбора плавких предохранителей».

Выбираем плавкую вставку предохранителя FU2 на ближайший больший стандартный номинальный ток 50 А, по каталогу на предохранители NV-NH фирмы ETI, согласно таблицы 2.

Номинальный ток отключения для предохранителей NV/NH с характеристикой АМ составляет 100 кА. По этому условие Iном.откл > Iмакс.кз., будет всегда выполнятся.

Аналогично рассчитываем номинальный ток плавкой вставки для двигателей 2Д-5Д и заносим результаты расчетов в таблицу 3.

Обозначение на схеме Тип двигателя Ном.ток, А Пусковой ток, А Номинальный ток плавкой вставки, А Ном. ток предохранит., А
Расчетный Выбранный
4АМ112М2 14,82 111,15 44,46 50 50
4АМ100L2 10,5 78,8 31,52 40 40
4АМ160S2 28,5 213,7 85,48 100 100
4АМ90L2 6,14 39,9 15,96 20 20
4АМ180S2 28,5 213,7 85,48 100 100

4. Выбираем плавкую вставку предохранителя FU1.

4.1 Определяем наибольший номинальный длительный ток с учетом, что у нас включены все двигатели:

4.2 Определяем наибольший ток, учитывая что наиболее тяжелым режимом для предохранителя FU1, будет пуск наиболее мощного двигателя 5Д при находящихся в работе двигателях 1Д, 2Д, 3Д, 4Д.

Выбираем плавкую вставку предохранителя FU1 на номинальный ток 125 А.

Теперь нам нужно проверить выбранные плавкие вставки на отключающую способность короткого замыкания для отходящих линий в соответствии с ПУЭ раздел 1.7.79, время отключения не должно превышать 5 сек. Для проверки берется ток однофазного замыкания на землю в сети с глухозаземленной нейтралью.

Значения токов короткого замыкания для проверки отключающей способности предохранителей берем из статьи: «Пример приближенного расчета токов короткого замыкания в сети 0,4 кв».

Проверим выбранную плавкую вставку предохранителя FU2 на отключающую способность.

Двигатель 1Д защищен плавкой вставкой на 50 А, ток однофазного КЗ составляет 326 А, максимальный ток отключения плавкой вставки при времени 5 сек составляет 281 А согласно таблицы 2, Iк.з.(1) = 326A > Iк.з.max=281A (условие выполняется). Аналогично проверяем и остальные предохранители, результаты расчетов заносим в таблицу 4.

Проверим на отключающую способность предохранитель FU1, учитывая, что ток трехфазного короткого замыкания в месте установки предохранителя Iк.з(3) = 2468 А.

Предельно допустимый ток отключения для предохранителя FU1 с плавкой вставкой на 125 А составляет 100 кА > 2468 A (условие выполняется).

Таблица 4 – Результаты расчетов

Обозначение на схеме Номинальный ток плавкой вставки, А Iк.з.(3), А Iк.з.(1), А Максимальный ток отключения плавкой вставки при времени 5 сек. Iк.з.max, A Примечание
FU1 125 2468
FU2 50 326 281 Условие выполняется
FU3 40 222 195 Условие выполняется
FU4 100 (80) 429 595 (432) Условие не выполняется
FU5 20 122 86 Условие выполняется
FU6 100 (80) 429 595 (432) Условие не выполняется

Как видно из результатов расчета для предохранителей FU4 и FU6 чувствительности к токам КЗ не достаточно. Чтобы увеличить чувствительность к токам КЗ, можно увеличить сечение кабеля, в данном случае увеличение сечение кабеля, является не целесообразным.

Либо уменьшить номинальный ток плавкой вставки для предохранителей FU4 и FU6, отстраиваясь от пусковых токов и учитывая, что условия пуска двигателя легкие (время пуска 5 сек.).

Как показывает опыт эксплуатации, для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.

Исходя из этого, выбираем ток плавкой вставки для предохранителей FU4 и FU6 на 80 А, где: Iк.з.max = 432 А при времени 5 сек., пусковой ток равен 213,7 А (условие выполняется).

Источник

Проект РЗА

Сайт о релейной защите и цифровых технологиях в энергетике

Для любителей предохранителей

Многие типы трансформаторов защищаются сегодня предохранителями. Это ТНы, небольшие ТСНы и даже силовые трансформаторы 6(10)/0,4 кВ малой мощности. Дешево, сердито и не нужно ничего настраивать.

Сегодня я предлагаю вам рассмотреть последствия установки предохранителя на масляный силовой трансформатор 6/0,4 кВ, в части получаемых защитных характеристик (чувствительность и время отключения). Обещаю, будет интересно!

Возьмем для примера ТП 6/0,4 кВ с трансформаторами 400 кВА. Соединение обмоток естественно D/Yo. Защищать предохранителями трансы Y/Yo – это уже из разряда невероятного, и, вроде, таким никто не занимается.

Стандартный уровень тока трехфазного короткого замыкания на шинах 6 кВ таких ТП составляет обычно 8-12 кА. Для расчета примем 10 кА.

Разделять токи на минимальный и максимальный режимы не будем потому, что это не сильно влияет на уровень токов КЗ на стороне 0,4 кВ, особенно за такими маломощными трансформаторами. Среднее напряжение сети 6,3 кВ.

Расчетная схема приведена на Рис.1

Теперь давайте рассмотрим наиболее интересные моменты, касающиеся предохранителей

1. Времена отключения коротких замыканий

Найдем номинальный ток трансформатора на стороне 6,3 кВ

Согласно [1, стр.49] номинальный ток предохранителя 6,3 кВ принимается примерно равным 2*Iном.т

Принимаем предохранитель ПКТ-6-80, с номинальным током 80А. Его характеристику возьмем из [2, стр. 335]

Теперь найдем минимальный ток короткого замыкания на шинах 0,4 кВ (конец зоны защиты для ПКТ-6-80), чтобы проверить время отключения предохранителя. Для этого сначала рассчитаем сопротивления схемы.

2. Сопротивление трансформатора

3. Отношение сопротивления системы к сопротивлению трансформатора

Читайте также:  Прокладки под изоляторы трансформаторов силовых

С точки зрения проверки чувствительности защиты/времени действия предохранителя критическим является ток однофазного КЗ на выводах 0,4 кВ трансформатора. Найдем этот ток для по кривым из [3, Приложение, Рис. П1]

Помня про наше соотношение Хс/Хт получаем минимальные токи КЗ через предохранитель (приведенный на сторону 6,3 кВ).

Металлический однофазный ток КЗ:

Дуговой однофазный ток КЗ:

Коэффициент 0,58 появляется из-за искажения тока КЗ при трансформации со стороны 0,4 на 6,3 кВ через обмотки D/Yo (см. видео по защитам трансформатора)

Ну, и наконец, получаем время отключения этих коротких замыканий по кривой ПКТ-6-80 (см. выше)

Время отключения металлического КЗ — 1,3 с

Время отключения дугового КЗ — 7 с

2. Защита трансформатора от перегрузки

Максимальный рабочий ток ТМГ-400 с учетом срабатывания АВР на стороне 0,4 кВ (СВ на Рис. 1 включен) примерно равен 1,4*Iном.т

Ток защиты от перегрузки (ступень на отключение) выбирается обычно на 5% больше максимального рабочего тока присоединения

3. Согласование с вышестоящими защитами.

Предположим наша ТП питается от вышестоящей РП 6 кВ через фидер 1 (см. Рис. 2). На фидере 1 установлена защита с независимой характеристикой.

Ориентировочные уставки защиты фидера 1:

Так как фидер питает одну ТП, то максимальный рабочий ток фидера можно принять равным максимальному рабочему току трансформатора.

Помним, что такая же уставка МТЗ будет у вводного автомата 0,4 кВ потому, что она тоже отстраивается от максимального рабочего тока трансформатора. Для согласования чувствительности защит примем ток защиты фидера на 10% больше.

Стандартное время МТЗ защиты фидера на городских ТП примерно 1 с.

Теперь, используя Гридис-КС, построим карту селективности защиты фидера и нашего предохранителя

Как видно из карты защитные кривые пересекаются, причем при минимальных токах КЗ на стороне 0,4 кВ защита фидера будет работать быстрее, неселективно отключая ТП. Изменить эту ситуацию не получится потому, что для этого нужно двигать кривую защиты фидера «вверх и вправо». Вверх нельзя потому, что там уже стоит защита СВ 6 кВ РП со своими выдержками времени, и их менять нельзя. А вправо не получится потому, что мы перестанем резервировать КЗ за трансформатором (минимальный Кч.рез.=1,2)

Если даже попытаться подобрать зависимую характеристику на фидере, то придется многим пожертвовать. Например, защитой от перегрузки фидера. Она просто исчезнет из-за увеличения начального тока характеристики.

Например, на Рис. 4 подобрана нормально инверсная характеристика с начальным током 240 А, вместо 85,1 А, иначе полной селективности добиться сложно. Можно конечно попробовать подобрать другой наклон и начальный ток кривой, но из графика видно, что оптимально все равно не получиться.

Есть и еще одна проблема. Как только вы примете на фидере зависимую характеристику защиты, то она перестанет согласовываться с независимой характеристикой СВ и ввода РП.

Выводы

1. Предохранитель защищает только от коротких замыканий. Для защиты от перегрузки вам придется искать другие способы (например, вводной автомат 0,4 кВ)

2. Времена отключения токов КЗ в конце зоны защиты (обмотки и выводы НН
трансформатора) у предохранителя очень большие. Это увеличивает объем
повреждения и будет негативно сказываться на сроке службы трансформатора

3. Предохранитель очень сложно согласовать с вышестоящими защитами. Фактически вы всегда будете нарушать условие селективности

4. При несимметричных КЗ на стороне 0,4 кВ через предохранители 6 кВ будут
протекать разные по величине токи. Таким образом, один из предохранителей может сработать раньше остальных и мы получим неполнофазный режим. Данный режим особенно опасен для двигателей.

Так, что, не использовать предохранители для защиты силовых трансформаторов?

Я бы сказал, что лучше не использовать, но это мнение релейщика. Для заказчика предохранители — это способ сэкономить и упростить электроустановку, поэтому он их и применяет и будет применять.

Единственно, что нужно помнить о всех недостатках предохранителей перед
нормальной релейной защитой и не использовать их для ответственных
объектов.

  1. «Защита трансформаторов распределительных сетей», М.А. Шабад., 1981 г, Энергоиздат
  2. «Расчеты релейной защиты и автоматики распределительных сетей», М.А. Шабад., 2003 г, ПЭИПК
  3. “Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ”, А.В. Беляев, 1988г., Энергоатомиздат

А если учесть еще и возможное отклонение типовой времятоковой кривой предохранителя на 20% [1, стр. 45- 47], то о селективности с вышестоящими защитами вообще можно забыть.

Да, этот момент еще больше ухудшает положение

Дмитрий, а как Вы считаете, как радикальное решение: может просто отказаться от селективности защиты ОЛ 6 кВ с предохранителем? Тогда при КЗ вместо случая отсутствия защитного аппарата трансформатора и отключения выключателем от защит ОЛ 6 кВ мы получим неселективное отключение выключателем от защит ОЛ 6 кВ.
С предохранителем как-то спокойнее – в последнее время качество проектной документации ухудшается, иногда попадаются выполненные расчеты уставок шараж-монтаж организациями после которых волосы дыбом встают. С наладкой тоже в последнее время не все ок. Все хотят быстро и дешево, а про качество забывают.

P.S. Сам поклонником предохранителей не являюсь. Характеристики подбирать удовольствие не из приятных. А потом еще их от руки в А-каде рисовать. Гридис-КС, что ли приобрести…

Так вроде селективность с предохранителем сегодня смотрят для минимального КЗ на стороне ВН. Даже у Шабада это где-то было. По-другому не получается. Я думаю, что если защита линии отключает одинаковый объем нагрузки с предохранителем (как в статье), то можно и неселективно работать (еще и плавкую вставку спасем). А вот если отпайки на линии висят — это уже плохо.

Гридис теперь можно приобрести на компанию, чтобы самому не тратить деньги. Если интересно могу выставить счет

Читайте также:  Трансформатор тпп230 220 50

Когда отпайки на линии висят вообще беда. Были случаи, когда на одной ОЛ висело сразу несколько трансформаторов, при чем разной мощности — от 250 до1600 с разными номиналами предохранителей — там со всеми по селективности не пройдешь — от чего-то отказываться приходилось. На счет приобретения — подумаю. Проблему, я считаю, правильную поднимаете.

Цитата: «Защищать предохранителями трансы Y/Yo – это уже из разряда невероятного, и, вроде, таким никто не занимается». Хочется спросить автора, а чем же тогда защищают трансы в КТП 10/0,4 кВ в сельских распредсетях? Там их тьма тьмущая и все Y/Yo?

Думаю, там предохранители стоят больше для красоты потому, что от тех же однофазных за трансом они вообще не защищают. При ПКТ-80 и ТМГ-400 с Y/Yo ток однофазного КЗ будет примерно в 3 раза ниже, чем для D/Yo. Даже с учетом, что коэффициент искажения будет 0,66, а не 0,58 все равно ток на стороне 6,3 кВ будет равен около 120 А. ПКТ-80 отключит такой ток примерно за «никогда».
Даже если возьмем плавкую вставку как Iном, а не как 2*Iном (обычно там однотрансформаторные ТПшки и перегрузка не допускается), то ПКТ-40 отключит ток в 120 А секунд за 20-30. Скорее всего ПКТ будут защищать только от КЗ на стороне ВН, но так как эти ТПшки обычно никого не волнуют, то их строят по принципу «и так сойдет»
Мне вообще кажется, что за использование трансов Y/Yo нужно предусматривать административную ответственность) Более гадкого транса придумать сложно

Проблемы известные. Поэтому защита таких установок подразумевает максимальное снижение вероятности однофазных КЗ в определенной части установки. По сути, отходящие фидера защищены линейными АВ, шины к линейным АВ защищены вводным АВ, сторона ВН находится в зоне защиты линии, так что наименее защищенными остаются обмотка НН, вывода (шпильки) 0,4 кВ, вводной кабель 0,4 кВ и клеммы вводного АВ. Поэтому текущая эксплуатация подразумевает надежное ограждение оголенных частей от попадания посторонних предметов. Таких частей две — шпильки 0,4 на баке (закрываются кожухом) и клеммы вводного АВ (находится в закрытом РШ). Ничего сложного и при ответственном отношении к делу, проблем особых нет. А будет простая и дешевая альтернатива ПКТ, тогда и … а будет ли?

Да,действительно Y/Yo это «чудо».Сам живу в сельской местности,почти в конце линии, рядом родительский двор, зимой у меня в розетке 260-270в. у родителей 170-180в питаемся по разным фазам. Но ТОЭ гласят что в трехфазной четырехпроводной сети нейтральный провод обеспечивает симметрию ФАЗНЫХ напряжений приемника при несимметричной нагрузке! Звоню в местный РЭС говорю диспетчеру что напряжение высокое, ответ -«Да это у тебя ноль слабенький,проверь его». У меня одни восклицательные знаки. … Ну да ладно думаю пройдусь по линии до ТП,может где ноль оборвался? Дошел до ТП все в порядке! Замерил токи на ТП по фазам и в нейтрали на стороне 0,4кв, получилось ф А-20 А,ф В-43 А, ф С-76 А, Io-37А. Uл 410-400-410 в. Uф-280-220-240в. Ток в контуре 1,8 А. Стою голову ломаю,картинка с определением из учебника электротехники в голове.На работе с ребятами инженерами пообщался,-«Да это просто ваша ТП слабая, или контур сгнил вот и косит». А почему ток в контуре, и нулевой проводник так нагружен. … И только от Дмитрия из «Курса защит трансформаторов 10/0,4кв» узнал об особенностях трансформаторов Y/Yo. Так же В журнале «Новости Электротехники» 6 (60) 2009 года,есть интересная статья А.Федоровской и В.Фишмана «Силовые трансформаторы 6(10)/0,4кв. Особенности применения различных схем соединения обмоток». Интересная таблица 1. как раз по поводу предохранителей, и упоминается о трансформаторах Y/Yo,

про слабый ноль — это разговоры в пользу бедных.. Y/Yo дает перекосы напряжения при несимметричной нагрузке на стороне 0,4 кВ, а на стороне 0,4 кВ всегда несимметричная нагрузка.. жуткие трансы — качество ЭЭ отстой, защиту нормально не выбрать и в чем преимущество перед D/Yo я так и не понял (стоят они кстати одинаково).. самое смешное, что некоторые заводы (Козлова, например) стали делать симметрирующую обмотку для Y/Yo, но только он тогда стоит дороже

Типовая ситуация. Нейтральный проводник служит прежде всего для получения напряжения 220 В, а его симметрирующие свойства зависят от его сопротивления. Но даже при его нулевом сопротивлении не будет идеальной симметрии, поскольку при несимметричной нагрузке возникают несимметричные потери напряжения в фазных проводниках. Схема соединения обмоток Y/Yo применяется повсеместно, и не только в сельских сетях. В городских сетях большинство таких трансформаторов. Это наиболее дешевые в производстве и эксплуатации трансформаторы. При применении таких трансформаторов о качестве электроэнергии не может быть и речи, поскольку трансформаторы очень чувствительны к несимметричной нагрузке фаз из-за большого сопротивления нулевой последовательности. Статистика измерений напряжений в сельских сетях свидетельствует о большом разбросе напряжений по фазам. И это реальность. Экономия средств на трансформаторы со схемами D/Yo и Y/Z и нулевые проводники с сечением, равным фазному, приводит к низкому качеству напряжения.

Я в силу своего молодого опыта думал что предохранители остались только в цепях постоянного тока и на 0,4 кВ, а в защитах высоковольтных линий (6-10 кВ) от них давно отказались, не ужели их до сих пор используют?

Вот предохранитель ПСН-35. До сих пор используется для защиты тр-ров 35 кВ на о-очень упрощенных ПС

Узость восприятия мира характеризуется отсутствием познавать большее.

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Источник

Оцените статью
Adblock
detector