Реле триггер 24 вольта

Триггерная схема на основе реле запоминает свое состояние при сбоях питания

TE Connectivity PB1114-ND PB2024-ND

Эта основанная на электромеханических реле схема может бесконечно долго сохранять свое состояние, даже при выключенном питании. Схема не потребляет энергии, за исключением моментов времени, когда она переключается из одного состояния в другое.

Во множестве вариантов схем управления включением/выключением используется какая-либо разновидность триггера, реагирующая на нажатие кнопки или иное управляющее воздействие. Во всех случаях информация о текущем статусе теряется при выключении питания, поэтому по умолчанию схема устанавливается в состояние «выключено», и иногда такая ситуация даже предпочтительна. Но если ваше устройство должно помнить состояние, в котором оно находилось в момент исчезновения питания, и восстановить это состояние, когда питание появится вновь, может возникнуть проблема.

Ниже описана триггерная схема, запоминающая свое состояние на бесконечное время при выключении питания. Более того, схема не потребляет никакой энергии, кроме коротких интервалов времени, в течение которых она переключается из одного состояния в другое. Поэтому она хорошо подходит для батарейного питания; пара таблеточных литиевых батареек может обеспечить ей годы автономной работы.

В схеме на Рисунке 1 K1 – это 5-вольтовое двухкатушечное поляризованное реле с двухполюсной группой перекидных контактов. Изучив каталоги различных дистрибьюторов, вы сможете найти порядка 70 наименований реле такого типа с напряжениями обмоток от 4.5 до 24 В DC, изготавливаемых четырьмя компаниями и продаваемых по ценам от $3 до $8 за одну штуку. Они хорошо сделаны, герметичны, миниатюрны и, как правило, имеют контакты, рассчитанные на коммутацию тока 2 А при напряжении до 250 В AC.

Рисунок 1. В таком включении без активных электронных компонентов
это двухкатушечное реле работает как триггер-защелка и
сохраняет свое состоянии даже при выключении питания.

Одна группа контактов (выводы 2, 3 и 4) используется для управления триггером, а другая группа (выводы 7, 8 и 9) доступна для конечного приложения. В показанном на рисунке состоянии конденсатор C1 заряжается до 5 В через резистор R1. Замыкание кнопки S1, разряжая C1 через диод D1 и обмотку K1A, перекидывает контакты реле. Затем C2 заряжается через R1, чтобы ждать следующего нажатия S1, которое разрядит C2 через диод D2 и обмотку K1B, возвращая контакты в исходное состояние.

Схема не отличается высоким быстродействием, которое ограничивается временем переключения контактов реле. Она создавалась преимущественно для ручного управления со скоростью не менее двух переключений в секунду. Поскольку питание подается на катушки лишь кратковременно, схема без повреждений выдерживает перегрузки по напряжению, предельный уровень которого ограничен, в первую очередь, номинальным напряжением конденсатора. При работе от источника питания 12 В схема способна переключаться с любой частотой, с которой вы сможете нажимать на кнопку S1. В то же время, если в каком-то приложении необходимо ограничить скорость, с которой включается и выключается схема, это легко сделать, увеличив сопротивление резистора R1.

Схема некритична к выбору номиналов компонентов. Конденсаторы C1 и C2 должны хранить достаточно энергии, чтобы переключать реле, имеющее время срабатывания 20 мс. Сопротивление резистора R1 должно быть достаточно большим, чтобы за время удерживания S1 в нажатом состоянии напряжение на конденсаторе не превысило 10-20% от напряжения включения реле.

Рисунок 2. В этом видоизмененном варианте оригинальной схемы
используется реле, катушка которого имеет отвод от
середины. Коммутируемый ток увеличился в четыре раза.

Если необходимо коммутировать ток более 2 А, можно использовать схему на Рисунке 2, адаптированную под вчетверо более крупное и вдвое более дорогое реле, контакты которого выдерживают 8 А при напряжении 250 В. Вместо двух катушек это реле имеет одну с отводом от середины и, соответственно, отличается расположением выводов, что потребовало некоторой переработки печатной платы.

Материалы по теме

Перевод: AlexAAN по заказу РадиоЛоцман

Источник

3 схемы ПРОСТОГО ТРИГГЕРА на РЕЛЕ

Хотя твердотельные реле применяются часто, во многих случаях проще, лаконичнее и надежнее использовать реле для управления включением / выключением мощных нагрузок (тенов, котлов, электромоторов).

Предлагаю рассмотреть три простые и надежные схемы управления базирующиеся на релейных триггерах.

Первая схема триггера на реле представляет собой пускатель для вентилятора или кулера. С помощью кнопок Кнр и Кнз можно включать и выключать нагрузку питающуюся от той же цепи питания что и схема управления. Но использование реле с двумя и более группами независимых контактов, позволяет этой схеме управлять и более мощными нагрузками любого тока (переменного/постоянного).

Эта схема еще более упрощена — в ней кнопка используется как «взвод» системы в дежурное рабочее состояние.
Такие схемы часто используются в системах сигнализации на размыкание.
Любой разрыв цепи питания заставит реле перейти в положение при котором замыкаемые (нормально замкнутые) контакты включают ревун или сигнализацию любого типа.

Это полная схема реализующая функционал автоматического включения дежурного освещения при отключении сети 220 вольт.

Читайте также:  Где находится реле поворотников мерседес w210

Пока напряжение в сети присутствует, схема удерживает контакты через которые подается питание на лампы от сети 220 вольт замкнутыми. Как только напряжение пропадает, реле автоматически перекидывает контакты питания на резерв (аккумуляторы или батареи).

Все три схемы легко исполнимы требуют минимум деталей и навыков для их построения. В качестве реле могут использоваться любые доступные , ограничение может быть только в мощности коммутируемых нагрузок.

Подписывайтесь на канал Яндекс.Дзен и узнавайте первыми о новых материалах, опубликованных на сайте.

ЕСЛИ СЧИТАЕТЕ СТАТЬЮ ПОЛЕЗНОЙ,
НЕ ЛЕНИТЕСЬ СТАВИТЬ ЛАЙКИ И ДЕЛИТЬСЯ С ДРУЗЬЯМИ.

Источник

РЕЛЕЙНЫЙ ТРИГГЕР 🔨 САМАЯ ПРОСТАЯ СХЕМА

Собрать триггер для управления мощными электрическими цепями можно по разному. Можно использовать пары транзисторов, тиристоры или твердотельные электронные реле. Но , используя их не стоит забывать об отводе тепла и радиаторах превращающих эти миниатюрные устройства в громоздких монстров ощетинившихся радиаторами.

Обойти Радиаторную проблему коммутации больших токов и напряжений можно используя Реле. И именно на них создать Триггер управления коммутируемыми электрическими цепями.

Триггер (триггерная система) — класс электронных устройств, обладающих способностью длительно находиться в одном из двух устойчивых состояний и чередовать их под воздействием внешних сигналов.

Используя знание силы токов удержания якоря реле за счет гистерезиса в зависимости токов замыкания и размыкания контактов, можно с помощью переменного резистора подобрать ток проходящий через катушку электромагнита реле так, чтобы он хорошо удерживал реле в одном из стабильных состояний, не препятствуя при этом срабатыванию реле. Ток удержания якоря в моей схеме равен 7 мА , что вполне оправдано для столь простой схемы и , иногда, не достижимо для электронных схем собранных на транзисторах и тиристорах.

Для тех кого смущает Двухкнопочная классическая схема могу предложить ознакомится со схемами Однокнопочными собранными мною ранее:

Источник

Радиоуправляемое реле своими руками

Собираем устройство радиоуправления на 4 команды

Кто из начинающих радиолюбителей не хотел сделать какое-нибудь устройство с управлением по радиоканалу? Наверняка многие.

Давайте рассмотрим, как на базе готового радиомодуля собрать несложное радиоуправляемое реле.

В качестве приёмо-передатчика я использовал готовый модуль. Купил его на AliExpress вот у этого продавца.

Комплект состоит из пульта–передатчика на 4 команды (брелок), а также платы приёмника. Плата приёмника выполнена в виде отдельной печатной платы и не имеет исполнительных цепей. Их необходимо собрать самому.

Брелок добротный, приятный на ощупь, поставляется с батарейкой 12V (23А).

В брелоке встроена плата, на которой собрана довольно примитивная схема пульта-передатчика на транзисторах и шифраторе SC2262 (полный аналог PT2262). Смутило то, что на микросхеме в качестве маркировки указано SC2264, хотя из даташита известно, что дешифратор для PT2262 – это PT2272. Тут же на корпусе микросхемы чуть ниже основной маркировки указано SCT2262. Вот и думай, что к чему . Что ж, для Китая это не удивительно.

Передатчик работает в режиме амплитудной модуляции (АМ) на частоте 315 МГц.

Приёмник собран на небольшой печатной плате. Радиоприёмный тракт выполнен на двух SMD-транзисторах с маркировкой R25 – биполярных N-P-N транзисторах 2SC3356. На операционном усилителе LM358 реализован компаратор, а к его выходу подключен дешифратор SC2272-M4 (она же PT2272-M4).

Суть работы сего устройства такова. При нажатии на одну из кнопок пульта A, B, C, D передаётся сигнал. Приёмник усиливает сигнал, а на выходах D0, D1, D2, D3 платы приёмника появляется напряжение 5 вольт. Вся загвоздка в том, что 5 вольт на выходе будет только пока нажата соответствующая кнопка на брелоке. Стоит отпустить кнопку на пульте — напряжение на выходе приёмника пропадёт. Упс. В таком случае не получиться сделать радиоуправляемое реле, которое бы срабатывало при кратковременном нажатии кнопки на брелоке и отключалось при повторном.

Связано это с тем, что существуют разные модификации микросхемы PT2272 (китайский аналог – SC2272). А в такие модули почему то ставят именно PT2272-M4, у которых нет фиксации напряжения на выходе.

А какие же бывают разновидности микросхемы PT2272?

PT2272-M4 – 4 канала без фиксации. На выходе соответствующего канала +5V появляется только тогда, пока нажата кнопка на брелоке. Именно такая микросхема используется в купленном мной модуле.

PT2272-L4 – 4 зависимых канала с фиксацией. Если включается один выход, то другие отключаются. Не совсем удобно, если необходимо независимо управлять разными реле.

PT2272-T4 – 4 независимых канала с фиксацией. Самый лучший вариант для управления несколькими реле. Поскольку они независимы, то каждое может выполнять свою функцию независимо от работы других.

Что же сделать, чтобы реле срабатывало так, как нам нужно?

Тут есть несколько решений:

Выдираем микросхему SC2272-M4 и вместо неё ставим такую же, но с индексом T4 (SC2272-T4). Теперь выходы будут работать независимо и с фиксацией. То есть можно будет включить/выключить любое из 4 реле. Реле будут включаться при нажатии кнопки, и выключаться при повторном нажатии на соответствующую кнопку.

Дополняем схему триггером на К561ТМ2. Так как микросхема К561ТМ2 состоит из двух триггеров, то понадобиться 2 микросхемы. Тогда будет возможность управлять четырьмя реле.

Используем микроконтроллер. Требует навыков программирования.

На радиорынке микросхему PT2272-T4 я не нашёл, а заказывать с Ali целую партию одинаковых микрух счёл нецелесообразным. Поэтому для сборки радиоуправляемого реле решил использовать второй вариант с триггером на К561ТМ2.

Читайте также:  Реле переходов тепловоз чмэ3

Схема достаточно проста (картинка кликабельна).

Вот реализация на макетной плате.

На макетке я быстренько собрал исполнительную цепь только для одного канала управления. Если взглянуть на схему, то можно увидеть, что они одинаковые. В качестве нагрузки на контакты реле нацепил красный светодиод через резистор в 1 кОм.

Наверняка заметили, что в макетку я воткнул готовый блок с реле. Его я вытащил из охранной сигнализации. Блок оказался очень удобным, так как на плате уже было распаяно само реле, штыревой разъём и защитный диод (это VD1–VD4 на схеме).

Пояснения к схеме.

Приёмный модуль.

Вывод VT – это вывод, на котором появляется напряжение 5 вольт, если был принят сигнал от передатчика. Я к нему подключил светодиод через сопротивление 300 Ом. Номинал резистора может быть от 270 до 560 Ом. Так указано в даташите на микросхему.

При нажатии на любую кнопку брелока светодиод, который мы подключили к выводу VT приёмника, будет кратковременно вспыхивать — это свидетельствует о приёме сигнала.

Выводы 5V и GND служат для подключения напряжения питания. Для питания схемы нам понадобится стабилизированный блок питания на 12 вольт. Ток потребления схемы небольшой, поэтому подойдёт любой блок. В качестве источника питания можно применить и блок питания, собранный своими руками.

Выводы D0, D1, D2, D3; – это выходы микросхемы дешифратора PT2272-M4. С них мы будем снимать принятый сигнал. На этих выходах появляется напряжение +5V, если был принят сигнал от пульта управления (брелока). Именно к этим выводам подключаются исполнительные цепи. Кнопки A, B, C, D на пульте (брелоке) соответствуют выходам D0, D1, D2, D3.

На схеме приёмный модуль и триггеры запитываются напряжением +5V от интегрального стабилизатора 78L05. Цоколёвка стабилизатора 78L05 показана на рисунке.

Буферная цепь на D-триггере.

На микросхеме К561ТМ2 собран делитель частоты на два. На вход С приходят импульсы с приёмника, и D-триггер переключается в другое состояние до тех пор, пока на вход С не придёт второй импульс с приёмника. Получается очень удобно. Поскольку реле управляется с выхода триггера, то и оно будет включено или выключено до тех пор, пока не придёт следующий импульс.

Вместо микросхемы К561ТМ2 можно использовать К176ТМ2, К564ТМ2, 1КТМ2 (в металле с позолотой) или импортные аналоги CD4013, HEF4013, HСF4013. Каждая из этих микросхем состоит из двух D-триггеров. Их цоколёвка одинаковая, но вот корпуса могут быть разные, как, например, у 1КТМ2.

Исполнительная цепь.

В качестве силового ключа используется биполярный транзистор VT1. Я использовал КТ817, но подойдёт КТ815. Он управляет электромагнитным реле K1 на 12V. К контактам электромагнитного реле K1.1 можно подключать любую нагрузку. Это может быть лампа накаливания, светодиодная лента, электродвигатель, электромагнит замка и др.

Цоколёвка транзистора КТ817, КТ815.

Следует учесть, что мощность подключаемой к контактам реле нагрузки должна быть не меньше той мощности, на которую рассчитаны контакты самого реле.

Диоды VD1–VD4 служат защитой транзисторов VT1–VT4 от напряжения самоиндукции. В момент отключения реле в его обмотке возникает напряжение, которое противоположено по знаку тому, которое поступало на обмотку реле от транзистора. В результате транзистор может выйти из строя. А диоды по отношению к напряжению самоиндукции оказываются открытыми и «гасят» его. Тем самым они берегут наши транзисторы. Не забывайте про них!

Если хотите дополнить исполнительную цепь индикатором включения реле, то добавляем в схему светодиод и резистор на 1 кОм. Вот схема.

Теперь, когда на обмотку реле будет подано напряжение, включится светодиод HL1. Это будет указывать на то, что реле включено.

Вместо отдельных транзисторов в схеме можно использовать всего лишь одну микросхему с минимумом обвязки. Подойдёт микросхема ULN2003A. Отечественный аналог К1109КТ22.

Это микросхема содержит 7 транзисторов Дарлингтона. Удобно то, что выводы входов и выходов расположены друг против друга, что облегчает разводку платы, да и обычное макетирование на беспаечной макетной плате.

Работает довольно просто. Подаём на вход IN1 напряжение +5V, составной транзистор открывается, и вывод OUT1 подключается к минусу питания. Тем самым на нагрузку подаётся напряжение питания. Нагрузкой может быть электромагнитное реле, электромотор, цепь из светодиодов, электромагнит и пр.

В даташите производитель микросхемы ULN2003A хвастается, что ток нагрузки каждого выхода может достигать 500 мА (0,5А), что собственно, не мало. Тут многие из нас умножат 0,5А на 7 выходов и получат суммарный ток в 3,5 ампера. Да, здорово! НО. Если микросхема и сможет прокачать через себя такой существенный ток, то на ней можно будет жарить шашлык.

На самом деле, если задействовать все выходы и пустить в нагрузку ток, то выжать без вреда для микросхемы можно будет около

80 – 100мА на канал. Опс. Да, чудес не бывает.

Вот схема подключения ULN2003A к выходам триггера К561ТМ2.

Есть ещё одна широко распространённая микросхема, которую можно использовать – это ULN2803A.

У неё уже 8 входов/выходов. Я её выдрал с платы убитого промышленного контроллера и решил поэкспериментировать.

Схема подключения ULN2803A. Для индикации включения реле можно дополнить схему цепью из светодиода HL1 и резистора R1.

Вот так это выглядит на макетке.

Кстати, микросхемы ULN2003, ULN2803 допускают объединение выходов для увеличения максимально-допустимого выходного тока. Это может потребоваться, если нагрузка потребляет более 500 мА. Соответствующие входы также объединяются.

Читайте также:  Мерседес 814 где находится реле поворотов

Вместо электромагнитного реле в схеме можно применить твёрдотельное реле (SSR — Solid State Relay). В таком случае, схему можно существенно упростить. Например, если применить твёрдотельное реле CPC1035N, то отпадает необходимость в питании устройства от 12 вольт. Достаточно будет 5-вольтового блока питания для питания всей схемы. Также отпадает необходимость в интегральном стабилизаторе напряжения DA1 (78L05) и конденсаторах С3, С4.

Вот так твёрдотельное реле CPC1035N подключается к триггеру на К561ТМ2.

Несмотря на свою миниатюрность, твёрдотельное реле CPC1035N может коммутировать переменное напряжение от 0 до 350 V, при токе нагрузки до 100 mA. Иногда этого достаточно, чтобы управлять маломощной нагрузкой.

Можно применить и отечественные твёрдотельные реле, я, например, экспериментировал с К293КП17Р.

Выдрал его с платы охранной сигнализации. В данной релюшке, кроме самого твёрдотельного реле, есть ещё и транзисторная оптопара. Её я не использовал – оставил выводы свободными. Вот схема подключения.

Возможности К293КП17Р весьма неплохие. Может коммутировать постоянное напряжение отрицательной и положительной полярности в пределах -230. 230 V при токе нагрузки до 100 mA. А вот с переменным напряжением работать не может. То есть постоянное напряжение к выводам 8 – 9 можно подводить как угодно, не заботясь о полярности. Но вот переменное напряжение подводить не стоит.

Дальность работы.

Чтобы приёмный модуль надёжно принимал сигналы от пульта–передатчика, к контакту ANT на плате нужно припаять антенну. Желательно, чтобы длина антенны была равна четверть длины волны передатчика (то бишь λ/4). Так как передатчик брелока работает на частоте в 315 МГц, то по формуле длина антенны составит

Где f – частота (в Гц), следовательно 315 000 000 Гц (315 Мегагерц);

Скорость света С – 300 000 000 метров в секунду (м/c);

λ – длина волны в метрах (м).

Те, кто не знает, как переводить приставки Мега- и Кило- в нули, прочтите статью о сокращённой записи численных величин.

Чтобы узнать, на какой частоте работает пульт–передатчик, вскрываем его и ищем на печатной плате фильтр на ПАВ (Поверхностно–акустических волнах). На нём обычно указана частота. В моём случае это 315 МГц.

При необходимости антенну можно и не припаивать, но дальность действия устройства сократится.

В качестве антенны можно применить телескопическую антенну от какого–нибудь неисправного радиоприёмника, магнитолы. Будет очень даже круто .

Дальность, при которой приёмник устойчиво принимает сигнал от брелока небольшое. Опытным путём я определил расстояние в 15 – 20 метров. С преградами это расстояние уменьшается, а вот при прямой видимости дальность будет в пределах 30 метров. Ожидать чего-то большего от такого простого устройства глупо, схемотехника его весьма проста.

Шифрование или «привязка» пульта к приёмнику.

Изначально, брелок и приёмный модуль незашифрованы. Иногда говорят, что не «привязаны».

Если купить и использовать два комплекта радиомодулей, то приёмник будет срабатывать от разных брелоков. Аналогично будет и с приёмным модулем. Два приёмных модуля будут срабатывать от одного брелока. Чтобы этого не происходило, применяется фиксированная кодировка. Если приглядеться, то на плате брелока и на плате приёмника есть места, где можно напаять перемычки.

Выводы от 1 до 8 у пары микросхем кодеров/декодеров (PT2262/PT2272) служат для установки кода. Если приглядется, то на плате пульта управления рядом с выводами 1 – 8 микросхемы есть лужёные полоски, а рядом с ними буквы H и L. Буква H – означает High («высокий»), то есть высокий уровень.

Если паяльником накинуть перемычку от вывода микросхемы к полоске с пометкой H, то мы тем самым подадим высокий уровень напряжения в 5V на микросхему.

Буква L соответственно означает Low («низкий»), то есть, накидывая перемычку c вывода микросхемы на полоску с буквой L, мы устанавливаем низкий уровень в 0 вольт на выводе микросхемы.

На печатной плате не указан нейтральный уровень – N. Это когда вывод микросхемы как бы «висит» в воздухе и ни к чему не подключен.

Таким образом, фиксированный код задаётся 3 уровнями (H, L, N). При использовании 8 выводов для установки кода получается 3 8 = 6561 возможных комбинаций! Если учесть, что четыре кнопки у пульта также участвуют в формировании кода, то возможных комбинаций становится ещё больше. В результате случайное срабатывание приёмника от чужого пульта с иной кодировкой становится маловероятным.

На плате приёмника пометок в виде букв L и H нет, но тут нет ничего сложного, так как полоска L подключена к минусовому проводу на плате. Как правило, минусовой или общий (GND) провод выполняется в виде обширного полигона и занимает на печатной плате большую площадь.

Полоска H подключается к цепям с напряжением в 5 вольт. Думаю понятно.

Я установил перемычки следующим образом. Теперь мой приёмник от другого пульта уже не сработает, он узнает только «свой» брелок. Естественно, распайка должна быть одинаковой как у приёмника, так и у пульта-передатчика.

Кстати, думаю, вы уже сообразили, что если потребуется управлять несколькими приёмниками от одного пульта, то просто распаиваем на них такую же комбинацию кодировки, как на пульте.

Стоит отметить, что фиксированный код не сложно взломать, поэтому не рекомендую использовать данные приёмо-передающие модули в устройствах доступа.

Источник

Оцените статью
Adblock
detector