Схема замещения линии сверхвысокого напряжения

Схемы замещения ЛЭП

Линия электрической сети теоретически рассматривается состоящей из бесконечно большого количества равномерно распределенных вдоль нее активных и реактивных сопротивлений и проводимостей.

Точный учет влияния распределенных сопротивлений и проводимостей сложен и необходим при расчетах очень длинных линий, которые в этом курсе не рассматривается.

На практике ограничиваются упрощенными методами расчета, рассматривая линию с сосредоточенными активными и реактивными сопротивлениями и проводимостями.

Для проведения расчетов принимают упрощенные схемы замещения линии, а именно: П-образную схему замещения, состоящую из последовательно соединенных активного (rл) и реактивного (xл) сопротивлений. Активная (gл) и реактивная (емкостная) (bл) проводимости включены в начале и конце линии по 1/2.

П-образная схема замещения характерна для воздушных ЛЭП напряжением 110-220 кВ длиной до 300-400 км.

Активное сопротивление определяется по формуле:

где rо – удельное сопротивление Ом/км при t о провода + 20 о , l – длина линии, км.

Активное сопротивление проводов и кабелей при частоте 50 Гц обычно примерно равно омическому сопротивлению. Не учитывается явление поверхностного эффекта.

Удельное активное сопротивление rо для сталеалюминиевых и других проводов из цветных металлов определяется по таблицам в зависимости от поперечного сечения.

Для стальных проводов нельзя пренебрегать поверхностным эффектом. Для них rо зависит от сечения и протекающего тока и находится по таблицам.

При температуре провода, отличной от 20 о С сопротивление линии уточняется по соответствующим формулам.

Реактивное сопротивление определяется:

где xо — удельное реактивное сопротивление Ом/км.

Удельные индуктивные сопротивления фаз ВЛ в общем случае различны. При расчетах симметричных режимов используют средние значения xо:

где rпр — радиус провода, см;

Дср — среднегеометрическое расстояние между фазами, см, определяется следующим выражением:

Где ДАВ, ДАВ, ДСА — расстояния между проводами соответствующих фаз А, В, С.

Например, при расположении фаз по углам равностороннего треугольника со стороной Д, среднегеометрическое расстояние равно Д.

При расположении проводов ЛЭП в горизонтальном положении:

При размещении параллельных цепей на двухцепных опорах потокосцепление каждого фазного провода определяется токами обеих цепей. Изменение Х0 из-за влияния второй цепи зависит от расстояния между цепями. Отличие Х0 одной цепи при учете и без учета влияния второй цепи не превышает 5-6% и не учитывается в практических расчетах.

В линиях электропередач при Uном≥330 кВ (иногда и при напряжении 110 и 220 кВ) провод каждой фазы расщепляется на несколько проводов. Это соответствует увеличению эквивалентного радиуса. В выражении для Х0:

где rэк — эквивалентный радиус провода, см;

аср — среднегеометрическое расстояние между проводами одной фазы, см;

nф— число проводов в одной фазе.

Для линии с расщепленными проводами последнее слагаемое в формуле 1 уменьшается в nф раз, т.е. имеет вид 0,0157/nф.

Удельное активное сопротивление фазы линии с расщепленными проводами определяются так:

где r0пр — удельное сопротивление провода данного сечения, определенное по справочным таблицам.

Для сталеалюминиевых проводов Х0 определяется по справочным таблицам, в зависимости от сечения, для стальных в зависимости от сечения и тока.

Активная проводимость (gл) линии соответствует двум видам потерь активной мощности:

1) от тока утечки через изоляторы;

Токи утечки через изоляторы (ТФ-20) малы и потерями в изоляторах можно пренебречь. В воздушных линиях (ВЛ) напряжением 110 кВ и выше при определенных условиях напряженность электрического поля на поверхности провода возрастает и становится больше критической. Воздух вокруг провода интенсивно ионизируется, образуя свечение — корону. Короне соответствуют потери активной мощности. Наиболее радикальными средствами уменьшения потерь мощности на корону является увеличение диаметра провода, для линий высокого напряжения (330 кВ и выше) использование расщепления проводов. Иногда можно использовать так называемый системный способ уменьшения потерь мощности на корону. Диспетчер уменьшает напряжение в линии до определенной величины.

Читайте также:  Блок питания hy3005 скачет напряжение

В связи с этим задаются наименьшие допустимые сечения по короне:

110 кВ — 70 мм 2 (сейчас рекомендуется использовать сечение 95 мм 2 );

Коронирование проводов приводит:

-к усиленному окислению поверхности проводов,

При расчете установившихся режимов сетей до 220 кВ активная проводимость практически не учитывается.

В сетях с Uном≥330 кВ при определении потерь мощности при расчете оптимальных режимов, необходимо учитывать потери на корону.

Емкостная проводимость (вл) линии обусловлена емкостями между проводами разных фаз и емкостью провод — земля и определяется следующим образом:

где в0 — удельная емкостная проводимость См/км, которая может быть определена по справочным таблицам или по следующей формуле:

где Дср — среднегеометрическое расстояние между проводами фаз; rпр — радиус провода.

Для большинства расчетов в сетях 110-220 кВ ЛЭП (линия электропередачи) представляется более простой схемой замещения:

Иногда в схеме замещения вместо емкостной проводимости вл/2 учитывается реактивная мощность, генерируемая емкостью линий (зарядная мощность).

Половина емкостной мощности линии, МВАр, равна:

где Uф и U – соответственно фазное и междуфазное (линейное) напряжения, кВ;

Iс — емкостный ток на землю:

Из выражения для QC (*) следует, что мощность QC, генерируемая линий сильно зависит от напряжения. Чем выше напряжение, тем больше емкостная мощность.

Для воздушных линий напряжением 35 кВ и ниже емкостную мощность (QC) можно не учитывать, тогда схема замещения примет следующий вид:

Для линий с Uном≥330 кВ при длине больше 300-400 км учитывают равномерное распределение сопротивлений и проводимостей вдоль линии.

Кабельные линии электропередачи представляют такой же П-образной схемой замещения как и ВЛ.

Удельные активные и реактивные сопротивления r0, х0 определяют по справочным таблицам, так же как и для ВЛ.

видно, что X0 уменьшается, а в0 растет при сближении разных проводов.

Для кабельных линий расстояние между проводами фаз значительно меньше, чем для ВЛ и Х0 очень мало.

При расчетах режимов КЛ (кабельных линий) напряжением 10кВ и ниже можно учитывать только активное сопротивление.

Емкостный ток и QC в кабельных линиях больше чем в ВЛ. В кабельных линиях (КЛ) высокого напряжения учитывают QC, причем удельную емкостную мощность QC0 кВАр/км можно определить по таблицам в справочниках.

Активную проводимость (gл)учитывают для кабелей 110 кВ и выше.

Удельные параметры кабелей X0, а также QC0 приведенные в справочных таблицах ориентировочны, более точно их можно определить по заводским характеристикам кабелей.

Источник

Схема замещения линии электропередачи

Схема замещения линии электропередачи — это представление линии электропередачи в виде математической модели для исследования различных режимов работы электрической сети.

Содержание

Общие положения

Активное сопротивление проводов и кабелей определяется материалом токоведущих жил, их сечением и частотой электрического тока. Для большинства расчётных задач зависимостью активного сопротивления провода от частоты переменного тока пренебрегают, вследствие низкой частоты тока в электрической сети (в России 50 Гц). Эта зависимость обусловлена наличием скин эффекта.

Активное сопротивление проводников электрического тока изменяется при их нагреве или охлаждении. При этом температура проводников изменяется при изменении величины протекающего электрического тока (более подробно можно ознакомиться здесь). Вследствие этого величины удельных активных сопротивлений являются переменными величинами, и определение их по справочным таблицам позволяет получить лишь приближённую оценку их величины. Зачастую этого приближения вполне достаточно, так как оно лежит в пределах точности задания других параметров электрической сети.

Магнитное поле, возникающее вокруг и внутри проводников, определяет их индуктивное сопротивление. Электродвижущая сила (э.д.с.), соответствующая индуктивному сопротивлению наводится в каждом проводнике линии электропередачи от проводов всех фаз. Поэтому её величина, а следовательно, и величина пропорционального её индуктивного сопротивления зависят от взаимного расположения проводов. Если это расположение обеспечивает одинаковое потокосцепление каждого провода, то наводимые в проводах э.д.с. становятся равными, а индуктивные сопротивления фазных проводов линии электропередачи одинаковыми. Такое равенство имеет место при расположении фазных проводов по вершинам равностороннего треугольника.

Читайте также:  Значение коэффициента для определения величины сжимающих напряжений при треугольной нагрузке

Индуктивные сопротивления фазных проводов линии электропередачи, у которой провода расположены горизонтально, по всей длине, отличаются друг от друга. Чтобы избежать появления нежелательной нессиметрии фазных значений сопротивлений, а следовательно токов и напряжений, применяют транспозицию проводов.

В большинстве случаев можно принять, что активное и реактивное сопротивление, активная и ёмкостная проводимости равномерно распределены по всей её длине. Для линий электропередач небольшой длины (при частоте 50 Гц границей можно считать длину 300 км) распределёность параметров можно не учитывать и можно использовать более простое представление в виде схемы замещения с сосредоточенными параметрами. Обычно в расчётах режимов работы энергосистем применяется П-образная схема замещения линии электропередач с сосредоточенными параметрами.

Воздушная линия электропередачи

Расчеты параметров приведены для одной цепи ЛЭП.

Величина активного сопротивления воздушной линии электропередачи влияет на нагрев проводов, при протекании по ним электрического тока. Для сталеалюминиевых проводов, являющихся наиболее часто используемыми для воздушных ЛЭП, активное сопротивление определяется главным образом алюминиевой частью. Это обусловлено эффектом вытеснения переменного тока к поверхности проводника (скин-эфффект). Активное сопротивление в первую очередь зависит от материала, из которого изготовлен проводник, его длины и сечения. При расчётах режимов работы энергосистемы активное сопротивление принято измерять в [Ом]:

[math]\displaystyle R = \rho \frac, [/math]

где [math]\displaystyle \rho[/math] — удельное активное сопротивление проводника [ [math]\displaystyle \frac <\text<Ом>\cdot \text<мм>^2><\text<км>> [/math] ]; [math]L[/math] — длина проводника [км]; [math]F[/math] — площадь поперечного сечения проводника [ [math]\displaystyle \text<мм>^2 [/math] ].

Для сталеалюминиевых проводов (обозначение марки провода — АС), выполненных в виде стального многопроволочного сердечника и многопроволочной алюминиевой оболочки, из-за поверхностного эффекта и разницы в удельных сопротивлениях стали и алюминия практически весь ток протекает по алюминиевым проводникам. Если учесть также, что ток протекает по отдельным проводникам, навитым вокруг сердечника и имеющим длину на 3—4 % больше длины провода, то расчётное удельное сопротивление сталеалюминиевого провода, отнесенное к единице его длины, составит [math]\displaystyle \rho = 31,5 \frac <\text<Ом>\cdot \text<мм>^2><\text<км>>[/math] .

Обычно в справочных материалах приводится удельное (погонное) сопротивление линии электропередачи [math]\displaystyle R_0[/math] [Ом/км] для стандартных сечений, тогда результирующее сопротивление одного провода определяется как,

[math]\displaystyle R = R_0 \cdot L. [/math]

Справочные значения приводятся для температуры окружающей среды 20°С. Активное сопротивление зависит от температуры, но при расчётах эта зависимость учитывается не всегда.

Индуктивное сопротивление воздушной ЛЭП определяется индуктивностью фаз ЛЭП по отношению к земле и взаимоиндукцией между фазами и, следовательно, зависит от взаимного расположения фаз, расстояния между фазами и диаметра провода.

Для устранения разницы в величине индуктивного сопротивления фаз (крайних и средней) производится транспозиция проводов.

Расположение проводов воздушной линии электропередачи на опоре может быть горизонтальным или треугольным.

Удельное индуктивное сопротивление фазы одноцепной транспонированной линии подсчитывается с учётом взаимоиндукции фаз по соотношению:

где [math]\displaystyle D_\text<ср>[/math] — среднегеометрическое расстояние между фазами [м]; [math]\displaystyle r_<\text<э>>[/math] — эквивалентный радиус фазы, если нет расщепления то [math]\displaystyle r_<\text<э>>=r[/math] [м]; [math]r[/math] — радиус провода фазы [м]; [math]m[/math] — число проводов в фазе, если нет расщепления то [math]\displaystyle m=1[/math] [шт.];

где [math]\displaystyle a_i[/math] — расстояние между первым и [math]\displaystyle i[/math] -м проводом в фазе [м]; [math]\displaystyle r = \frac<2>[/math] — радиус фазного проводника.

Усреднённые среднегеометрические расстояния между фазными проводниками воздушных ЛЭП [1]

Класс напряжения, кВ 35 110 150 220 330 500 750
Среднее геометрическое расстояние, м 3,5 5,0 6,5 8,0 11,0 14,0 19,5

Удельная активная проводимость воздушной линии (характеризующая потери на корону крайне малый ток утечки через изоляторы) определяется по соотношению:

Эквивалентная активная проводимость определяется следующим образом:

[math]\displaystyle G = G_0 \cdot L. [/math]

Читайте также:  Как узнать был ли скачок напряжения в доме

Для воздушных линий погонные потери активной мощности на корону существенно зависят от погодных условий и напряжения, поэтому активная погонная проводимость является переменным и нелинейным параметром. В большинстве случаев более целесообразно непосредственно учитывать для линии электропередачи в виде дополнительной нагрузки по концам линии (узлы 1 и 2) [math]\displaystyle P_1=P_2=\frac<\Delta P_<к.0>><2>[/math] или в виде активной проводимости на землю [math]\displaystyle \frac <2>[/math] .

Коронирование проводов приводит:

  • к снижению КПД передачи электрической энергии;
  • к усиленному окислению поверхности проводов;
  • к появлению радиопомех.

Ёмкостная проводимость линии определяется токами смещения за счёт электростатического поля линии (между фазами и по отношению к земле). Эта проводимость создает так называемый зарядный, или ёмкостный, ток, вектор которого опережает на 90° вектор напряжения линии. Величина удельной ёмкостной проводимости

Эквивалентная ёмкостная проводимость:

[math]\displaystyle B = B_0 \cdot L. [/math]

Ёмкостная проводимость воздушных линий электропередачи слабо зависит от конструктивных особенностей ЛЭП и имеет значение от [math]2,55 \cdot 10^<-6>[/math] до [math]2,80 \cdot 10^<-6>[/math] [См/км] для ВЛ 110—220 кВ и от [math]\displaystyle 3,4 \cdot 10^<-6>[/math] до [math]\displaystyle 4,2 \cdot 10^<-6>[/math] [См/км] для ВЛ 330—750 кВ. Значения удельных проводимостей приводятся в справочной литературе [1] .

Кабельная линия электропередачи

Кабельные линии электропередач в расчётах представляют такой же П-образной схемой замещения, что и воздушные линии. Удельные продольные активные и реактивные сопротивления определяются по справочным таблицам так же как и для воздушных линий.

Особенностью кабельных линий электропередач является близкое расположение фаз (по сравнению с воздушными линиями), что приводит к снижению удельного индуктивного сопротивления и увеличению удельной ёмкостной проводимости.

Для кабельных линий электропередачи напряжением 110 кВ и выше необходимо учитывать потери в изоляции кабеля. Они определяются по формуле:

[math] G = B \cdot \operatorname \delta. [/math]

Параметр [math]\operatorname \delta[/math] называется тангенс диэлектрчиеских потерь и определяется по данным завода изготовителя кабеля. Обычно находится в пределах от 0,003 до 0,006.

Схема замещения с сосредоточенными параметрами

При расчёте режима работы электрической сети воздушная трехфазная линия переменного тока напряжением до 500 кВ и длиной до 300 км может быть представлена схемой замещения с сосредоточенными параметрами П-образного вида. В случае превышения длины линии электропередачи 300 км необходимо изменить схему замещения одним из трёх способов:

  1. Разделить её на сегменты длиной менее 300 км.
  2. Представить линию волновыми параметрами.
  3. При длинах от 300 до 500 км можно использовать поправочные коэффициенты, значение которых при малых длинах близко к единице:
    • [math]\displaystyle K_R = 1 — \frac<3>X_0 B_0 [/math] ;
    • [math]\displaystyle K_X = 1 — \frac<6>X_0 B_0 (1 — \frac) [/math] ;
    • [math]\displaystyle K_C = \frac<3 + k_r><2(1+K_R)>[/math] .

В зависимости от класснапряжения воздушной ЛЭП можно использовать различные схемы замещения:

  1. 220 кВ и выше. Полная схема замещения с активным и ёмкостным шунтом.
  2. от 35 кВ до 220 кВ. Сокращённая схема замещения только с ёмкостным шунтом.
  3. до 35 кВ. Схема замещения без шунтов.

Для расчёта режимов электрической сети, как правило, используется П-образная схема замещения сети, параметры схемы замещения вычисляются для одной фазы. При расчётах режима удобно схемы замещения представлять в виде, представленном на рисунке.

Полное продольное сопротивление и проводимости (шунты узлов 1 и 2) схемы замещения имеют вид

[math]\displaystyle Z = R +jX; [/math] [math]\displaystyle Y_1 = Y_2 = \frac<2>+j\frac<2>. [/math]

Зачастую при расчётах установившихся режимов активная проводимость ЛЭП не учитывается, так как принятые меры борьбы с короной достаточно эффективны и, следовательно, потери на корону достаточно малы. Для воздушных линий классом напряжения менее 220 кВ потери на коронирование можно не учитывать, так как это существенно не скажется на полученной оценке параметров установившегося режима.

В случае исследования режимов воздушных линий напряжением менее 35 кВ можно не учитывать также ёмкостные шунты. В этом случае, схема замещения будет содержать только продольное сопротивление [math]Z[/math] .

Источник

Оцените статью
Adblock
detector