Умножитель напряжения для частотного преобразователя

Умножитель напряжения для частотного преобразователя

Схема для питания частотного преобразователя на 380в. от сети напряжением 220в. выполнена по классической схеме удвоителя напряжения с двумя диодами. В данном случае применен диодный мост, диоды которого включены паралельно. Выход удвоителя подключается к клемам шины частотника 600в. Если таких клемм на корпусе «частотника» не предусмотрено, необходимо вскрыть частотник и подключить выход платы к электролитическим конденсаторам частотного преобразователя. Как правило такие клеммы есть, но называться они могут по другому.

Данная схема может обеспечить питание любого асинхронного двигателя на 380 вольт, при условии что обычная бытовая сеть способна обеспечить необходимую мощность. При желании, в Интернете можно найти более детальную информацию и видеоролики, какую мощность могут отдавать подобные схемы на практике.

Плавный пуск схемы обеспечивается с помощью термистора PTC15P и реле времени на таймере NE555.


Принципиальная схема удвоителя напряжения для частотника


Вид печатной платы сверху


Вид печатной платы снизу


Вид собранной платы блока питания частотника

Миниатюрный блок питания для реле времени 220/12V (300mA) с AliExpress.
(Или любой другой. Например, переделанный от зарядного устройства или изготовить самостоятельно )

Можно обойтись и без источника питания и схемы реле времени, а использовать простую кнопку с фиксацией или тумблер. — После зарядки конденсаторов, замыкать контакты термистора.

Если у кого то возникнет мнение, что все здесь описанное слишком сложно, то могу сказать определенно — изготовление чего то подобного на других компонентах будет более громоздким и не менее сложным.

Есть остатки плат!

Источник

Умножитель напряжения для частотного преобразователя

Назначение умножителей напряжения, структура и нагрузочная способность

Умножители напряжения по структуре представляют собой специализированные выпрямители, обеспечивающие повышение выходного напряжения в целое число раз. Отсюда и название – умножители напряжения. [Диссертация — Хречков, Николай Григорьевич «Динамические характеристики умножителей напряжения высоковольтных электротехнических систем», 2006 г.]. Традиционным является применение умножителей напряжения в высоковольтных источниках питания, что позволяет существенно уменьшить их массогабаритные показатели. Дело в том, что использование в высоковольтных источниках выпрямителей (однополупериодного, с общей точкой, мостового) в источниках высокого напряжения оправдано только в случае, когда требуется высокая мощность источника, поскольку при использовании выпрямителя необходимо и использовать трансформатор, рассчитанный на напряжение, равное выходному. Разработка и создание трансформаторов с высоким выходным напряжением (более 15-20 кВ) является сложной технической задачей (секционирование обмоток, межслоевая изоляция, заливка компаундом и т.д.) кроме этого трансформаторы такого класса имеют большие габариты и стоимость. Использование умножителя напряжения позволяет снизить требования к выходному напряжению трансформатора и существенно упростить его конструктив. Таким образом, умножитель напряжения является одним из базовых элементов высоковольтного преобразователя.

На вход умножителей напряжения подается переменное напряжение, на выходе получаем умноженное постоянное. Любой умножитель содержит в себе два типа элементов – конденсаторы и диоды. По структуре электрической схемы умножители делятся на несимметричные и симметричные. Отличие заключается в том, что в симметричных схемах ток, потребляемый от источника переменного напряжения, одинаков по форме в течение обоих полупериодов, а в несимметричных схемах формы импульсов тока при отрицательном и положительном полупериодах различны. Это может вызвать «вылет» рабочего режима магнитопровода в область насыщения. Кроме этого частота пульсаций в симметричных умножителях напряжения в два раза меньше по сравнению с несимметричными, что обеспечивает их лучшую нагрузочную способность. Поэтому при большой выходной мощности высоковольтного источника целесообразно применять симметричные умножители. При этом важно понимать, что симметричный умножитель состоит из двух несимметричных.

Подробный аналитический расчет режимов работы умножителей напряжения представлен в [Диссертация — Хречков Николай Григорьевич «Динамические характеристики умножителей напряжения высоковольтных электро-технических систем», 2006 г.].

Факторы, влияющие на нагрузочную способность умножителя напряжения:

Структура схемы определяет нагрузочную способность умножителя, симметричные схемы умножения напряжения имеют несколько большую нагрузочную способность по сравнению с несимметричными.

Частота напряжения на входе умножителя. Нагрузочная способность прямо пропорциональна частоте, с ограничениями по верхней её величине накладываемым паразитными элементами схемы – емкостями диодов, индуктивностями проводников схемы и обкладок конденсаторов. Кроме этого, конденсаторы имеют некоторую пороговую частоту, выше которой снижается максимально допустимая величина напряжения.

Величина емкости входящих в его состав конденсаторов. Нагрузочная способность прямо пропорциональна емкости конденсаторов в звеньях умножителя.

Число звеньев умножителя. Нагрузочная способность обратно пропорциональна числу звеньев умножителя.

Форма напряжения в теории может быть любой, однако максимальная нагрузочная способность при прочих равных факторах достигается, при напряжении, имеющем форму разнополярных прямоугольных импульсов одинаковой амплитуды.

Ниже представлены типовые схемы умножителей напряжения различных типов.

Несимметричный умножитель напряжения (Villard cascade)

Рисунок MULT.1 — Электрическая схема несимметричного умножителя напряжения

Принцип работы: В течение отрицательного полупериода конденсатор C1 заряжается от источника переменного напряжения до амплитудного значения; в течение положительной полуволны к конденсатору C2 прикладывается суммарное напряжение источника питания и конденсатора C2 и за нескольких периодов он заряжается до удвоенного напряжения. Аналогично ступенчато происходит заряд последующих конденсаторов: заряд конденсатора C3 происходит, начиная со второго отрицательного периода, конденсатора C4 – начиная со второго положительного и так далее. Так, за несколько периодов умножитель выходит на квазистационарный режим и суммарное выходное напряжение на каждом из конденсаторов, кроме первого равно удвоенному амплитудному значению источника. Максимальное обратное напряжение на диодах также равно удвоенному амплитудному значению.

Особенности: универсальность, низкая нагрузочная способность. Эффективность резко снижается с увеличением числа звеньев умножителя. Общая «земля».

Величина пульсаций на выходе умножителя ∆V для синусоидальной формы выходного напряжения определяется по формуле [E. Kuffel, W.S. Zaengl and J. Kuffel. High Voltage Engineering Fundamentals (Second Edition). Newnes. 2000. 539 p.; http://www.kronjaeger.com/hv/hv/src/mul/ ]:

при 0.5 C1=C2=C3 =… Cn (то есть при удвоенном значении емкости C1 относительно остальных).

где n – число звеньев умножителя.

Симметричный умножитель напряжения (Double Villard cascade)

Данный симметричный умножитель напряжения фактически представляет собой два соединенных несимметричных умножителя с различными полярностями напряжения относительно общей точки.

Рисунок MULT.2 Электрическая схема симметричного умножителя напряжения (последовательный тип)

Принцип работы: аналогичен принципу работы несимметричного умножителя напряжения (Villard cascade).

Особенности: универсальность, низкая нагрузочная способность. Эффективность резко снижается с увеличением числа звеньев умножителя. Общая «земля». Возможность реализации двух полярностей напряжения относительно общей точки. Различные варианты подключения источника питающего переменного напряжения к умножителю (рисунок MULT.2). Преимуществом схемы является одинаковое падение напряжения на конденсаторах, что позволяет использовать конденсаторы одного типа (рассчитанных на одинаковое напряжение).

Величина пульсаций на выходе умножителя ΔV рассчитывается по выше приведенным соотношениям, умноженным на два (поскольку фактически умножителей в структуре схемы два).

Симметричный умножитель напряжения Шенкеля – Вилларда

Рисунок MULT.3 — Электрическая схема симметричного умножителя напряжения Шенкеля – Вилларда (параллельный тип)

Принцип работы: в течение первого положительного полупериода происходит заряд емкостей С1, С3, … Сn (нечетные) до напряжения питания, во время последующей отрицательной полуволны заряжаются емкости С2, С4, … С(n-1) (четные) заряжаются до напряжения питания через четные емкости уменьшая их напряжение практически до нуля. В течение следующего положительного периода заряд каждого нечетного конденсатора происходит удвоенным напряжением последовательного соединения источника питания и четного конденсатора умножителя. При этом нечетные конденсаторы заряжаются до напряжения большего амплитудного. В процессе работы происходит ступенчатый рост напряжения на конденсаторах умножителя начиная с Сn.

Особенности: симметричная схема, превосходная нагрузочная способность, ступенчатое увеличение напряжения на каждом звене. Общая «земля».

Гибридный умножитель напряжения последовательно-параллельного типа

Рисунок MULT.4 — Электрическая схема симметричного умножителя напряженияумножитель напряжения последовательно-параллельного типа

Принцип работы: в течение первого положительного полупериода происходит заряд емкостей последовательного столба С2, С4, … Сn (четные) главным образом через емкость С1 заряжающейся в течение первого положительного полупериода противоположно. В течение следующего отрицательного полупериода происходит заряд нечетных емкостей С1, С3, … С(n-1) до уровней напряжений превышающих амплитудное, поскольку к ним прикладывается суммарное напряжение источника питания и емкостей последовательного столба С2, С4, соединенных последовательно. При этом С(n-1) емкость имеет максимальное напряжение, поскольку к ней прикладывается напряжение полного столба и источника питания, а «нижние» емкости заряжаются до меньшего напряжения поскольку к ним прикладывается напряжение только части последовательного столба. В этот полупериод емкости последовательного столба несколько разряжаются.

В течение следующего положительного периода емкости последовательного столба С2, С4 заряжаются до большего чем в предыдущем положительном полупериоде уровня напряжения, так как к ним прикладывается суммарное напряжение источник питания и напряжений на емкостях С1, С3, … С(n-1). Так в процессе работы происходит ступенчатый рост напряжения на конденсаторах и соответствующее увеличение выходного напряжения.

Особенности: гибридная схема, обеспечивающая высокую нагрузочную способность симметричных схем. Преимуществом схемы является возможность использования в правом ёмкостном «столбе» одинаковых (рассчитанных на одинаковое напряжение) конденсаторов большой емкости качестве накопительно-фильтрующих элементов и применение конденсаторов меньшей емкости в левой части схемы, но рассчитанных на существенно большее напряжение (по причине ступенчатого увеличения напряжения на каждом звене). Общая «земля».

Симметричный умножитель на основе диодных мостов

Рисунок MULT.5 — Электрическая схема симметричного умножителя напряжения на основе диодных мостов

Принцип работы: в целом аналогичен принципу работы симметричного умножителя напряжения Шенкеля – Вилларда.

Особенности: хорошая нагрузочная способность. Одна из классических схем умножения напряжения в высоковольтных источниках питания для физических экспериментов.

Симметричный двухполупериодный умножитель Кокрофта-Уолтона

Рисунок MULT.6 — Электрическая схема симметричного умножителя напряженияКокрофта-Уолтона

Особенности: хорошая нагрузочная способность. Схема широко используется высоковольтных источниках питания для физических экспериментов.

Величина пульсаций на выходе умножителя для синусоидальной формы выходного напряжения определяется по формуле [А.А. Ровдо Полупроводниковые диоды и схемы с диодами. Лайт Лтд. 2000. 286 с.]:

Удвоитель напряжения Латура-Делона-Гренашера

Рисунок MULT.7 — Удвоитель напряжения Латура-Делона-Гренашера

Фактически схема является удвоенным однополупериодным выпрямителем напряжения, верхнее плечо которого выпрямляет положительную полуволну, нижнее – отрицательную.

Принцип работы: в течение положительного полупериода через диод VD1 заряжается конденсатор C1, в течение отрицательного полупериода через диод VD2 заряжается конденсатор C2. К нагрузке прикладывается удвоенное напряжение.

Особенности: хорошая нагрузочная способность. Симметричная схема. Классика.

Примеры схемотехнических реализаций умножителей напряжения

Далее представлены несколько частных случаев умножителей напряжения.

Утроители напряжения

Рисунок MULT.8 — Частный случай несимметричного умножителя напряжения с числом ступеней равным 3

Рисунок MULT.9 — Частный случай симметричного умножителя напряжения Шенкеля – Вилларда с числом ступеней равным 3.

Умножители на 4

Рисунок MULT.10 — Частный случай гибридного умножителя напряжения с числом звеньев равным 4.

Рисунок MULT.11 — Частный случай симметричного умножителя напряжения Шенкеля – Вилларда с числом ступеней равным 4.

Умножитель на 6

Рисунок MULT.12 — Частный случай симметричного умножителя напряжения с различным числом ступеней (см. рисунок MULT.2 симметричного умножителя) и однополярным включением относительно общей точки.

Умножитель на 8

Рисунок MULT.13 — Частный случай симметричного умножителя напряжения (см. рисунок MULT.2 симметричного умножителя) и однополярным включением относительно общей точки.

Требования к диодам и конденсаторам умножителей напряжения

Основные требования, предъявляемые к диодам , используемым в схемах умножителей:

– максимально допустимая величина обратного напряжения диода должна с запасом (как минимум на 20 %) превышать рабочее напряжение в схеме;

— быстрое восстановление изолирующих свойств при смене полярности напряжения. С этой целью рекомендуется использование диодов класса Ultra-Fast с временем обратного восстановления порядка 10-50 нс;

— малая паразитная емкость. В связи с этим не является целесообразным использование диодов с большим запасом по току, т.к. у них большая емкость.

Как правило, средние значения тока протекающего через диоды умножителей напряжения не превышает сотен миллиампер, поэтому в умножителях напряжениях используются диоды, рассчитанные на малый ток и большое напряжение (таблица MULT.1). При необходимости обеспечения большего значения обратного напряжения допустимо использование последовательного соединения диодов, но при этом необходимо, чтобы диоды были одинакового типа и желательно одной партии.

Таблица MULT.1 — Основные характеристики быстродействующих диодов

Марка диода

Максимальное обратное напряжение, В

Средний ток, А

Время обратного восстановления, нс

Источник

Читайте также:  Контролька с подачей напряжения
Оцените статью
Adblock
detector