Встречное регулирование напряжения сети

Встречное регулирование напряжения.

В соответствии с «Правилами устройства электроустановок» энергоснабжающая организация должна поддерживать напряжение в центре питания в режиме наибольшей нагрузки не ниже 1,05Uном. , а в режиме наименьшей нагрузки не выше 1,0Uном. . В этом требовании заключается принцип встречного регулирования напряжения.

Для обеспечения встречного регулирования напряжения применяют автоматические регуляторы напряжения с токовой компенсацией.

39 Конденсаторная батарея для регулирования напряжения

Конденсаторная батарея является простым и надёжным статическим устройством. Конденсаторные батареи собирают из отдельных конденсаторов различной мощности от 10 до 100 квар и напряжением от 230 В до 10,5 кВ. Конденсаторы обладают хорошей перегрузочной способностью по току (до 30% номинального) и напряжению (до 10% номинального). Конденсаторной батареей называют группу конденсаторов, соединённых между собой параллельно и (или) последовательно. Конденсаторная батарея, оборудованная коммутационной аппаратурой, средствами защиты и управления, образует конденсаторную установку (КУ), принципиальная схема которой показана на рис. 5.13.

Рис. 5.13 Принципиальная схема одной трёхфазной секции конденсаторной установки: а) для сети напряжением 6–10 кВ; б) для сети напряжением 380 В

В схемах с продольной компенсацией (см. рис. 5.15) мощность КБ изменяется

пропорционально квадрату протекающего через неё тока Такая КБ в

устройствах продольной компенсации (УПК) включается в рассечку (последовательно) воздушной линии и увеличивает реактивную мощность при увеличении нагрузочного тока линии.

Рис. 5.15 Присоединение КБ к сети при продольной компенсации реактивной мощности

Конденсаторные батареи в составе конденсаторной установки и УПК применяются для регулирования напряжения.

Регулирование напряжения с помощью конденсаторной установки (при поперечной компенсации реактивной мощности) применяют в распределительных сетях напряжением 110 кВ и ниже.

Регулирование напряжения с помощью УПК достигается путём изменения сопротивления воздушной линии. В электрических системах УПК устанавливаются в питающих сетях напряжением 220 кВ и выше, индуктивное сопротивление которых значительно превышает активное (см. рис. 5.15).

эффект регулирования напряжения достигается за счёт параметрического снижения потребляемой реактивной мощности на величину

40 Компенсация высших гармонических составляющих тока

Искажения синусоидальной формы кривой напряжения в узлах системы электроснабжения — это результат искажения синусоидальной формы тока, потребляемого нелинейными электроприёмниками.

Способы снижения несинусоидальности напряжения можно разделить на три группы.

Схемные решения:выделение нелинейных нагрузок на отдельную систему шин; рассредоточение показателями.

Способы компенсации высших гармоник тока не являются универсальными. Выбор того или иного из них определяется рядом принципиальных факторов, среди которых, прежде всего, необходимо отметить следующие:

— вид источника высших гармоник тока (преобразователь, дуговая печь, сварочная установка и т.п.), что определяет уровень генерируемых гармоник тока, их спектр;

— местоположение источника в схеме и мощность системы электроснабжения в точке его подключения;

— наличие в системе электроснабжения других ранее установленных средств компенсации;

влияние источника гармоник на таких нагрузок по различным узлам СЭС; группирование преобразователей по схеме умножения фаз; подключение нагрузки к системе с большей мощностью SКЗ.

Использование фильтров:включение параллельно нагрузке узкополосных резонансных фильтров; включение фильтрокомпенсирующих устройств; применение фильтросимметрирующих устройств, активных фильтров продольного и поперечного включения.

Применение специального оборудования, характеризующегося пониженным уровнем генерации высших гармоник тока:«ненасыщающихся» трансформаторов, многофазных преобразователей с улучшенными энергетическими другие электроприёмники, установленные в системе электроснабжения в непосредственной электрической близости;

Фильтрокомпенсирующие устройства являются одним из универсальных способов снижения токов и напряжений высших гармоник в системах электроснабжения. Эти устройства представляют собой последовательное соединение индуктивного и ёмкостного сопротивлений, настроенных в резонанс или близко к нему на частоту генерируемой гармоники тока. Сопротивление ФКУ на резонансной частоте очень мало по сравнению с входным сопротивлением СЭС (в идеальном случае близко к нулю) и, таким образом, шунтирует ток высшей гармоники, генерируемой нелинейной нагрузкой.

Читайте также:  Нормальное напряжение бортовой сети опель астра н

Особенности управления ФКУ.Обычно на шинах потребителя, располагающего нелинейными электроприёмниками, устанавливается несколько фильтров, каждый из которых настроен на свою резонансную частоту, например 5, 7, 11 и 13-й гармоник. Так как ФКУ является источником реактивной мощности, в некоторых случаях возникает необходимость регулирования ФКУ в целях поддержания требуемого баланса реактивной мощности по условиям регулирования напряжения. Поэтому при переключениях фильтров следует иметь в виду, что их сопротивление на различных гармониках, порядок которых больше или меньше резонансной частоты фильтра, изменяется, принимая индуктивный или ёмкостной характер.

41 Симметрирующий эффект конденсаторной батареи

Задача симметрирования состоит в том, чтобы параллельно несимметричной нагрузке (на те же шины) поставить устройство, которое компенсировало бы ток обратной и (или) нулевой последовательности. При этом ток компенсирующего устройства должен быть равен по значению и противоположен по фазе соответствующему току, создаваемому нагрузкой. Такое устройство может быть собрано из ёмкостных, индуктивных и резистивных элементов или их комбинации.

Векторная диаграмма тока и напряжения на КБ изображена на рис. 5.22, б. При этом векторы междуфазных U ab =Ubc =Uca сдвинуты относительно друг друга на 120°, а токи в конденсаторах и также сдвинуты на 120°.

Система (5.4) описывает симметрирующий эффект конденсаторной батареи и позволяет выбрать её параметры (ёмкость, номинальное напряжение и мощность) в симметрирующем устройстве. Решение (5.4) позволяет сделать следующие выводы:

— ток прямой последовательности I не зависит от фаз токов Iab , Ibc , Ica протекающих в конденсаторах. Следовательно, КБ всегда является источником реактивной мощности, генерируя ток прямой последовательности I ;

— ток I обратной последовательности равен векторной сумме токов конденсаторов. Следовательно, выбирая эти токи (мощности КБ в фазах), можно обеспечить требуемый для симметрирования ток (симметрирующий эффект);

— ток I нулевой последовательности в линейных проводах симметрирующего устройства отсутствует, и, следовательно, при такой схеме соединений КБ симметрирующий эффект по нулевой последовательности достигнут быть не может.

42 Компенсация колебаний напряжения

Колебания напряжения в системе электроснабжения промышленного предприятия вызываются резкими изменениями реактивной мощности. Размах изменения напряжения может быть ориентировочно определен по выражению:

где Q — размах изменений реактивной мощности нагрузки; X — сопротивление короткого замыкания в точке подключения нагрузки; U — номинальное напряжение на зажимах нагрузки.

Из этого выражения следует, что для снижения d Ut необходимо уменьшать либо

X , либо реактивную мощность нагрузки Q .

Остановимся подробнее на способах снижения DQ .

Эффект использования сдвоенного реактора основан на том, что коэффициент взаимоиндукции между обмотками сдвоенного реактора k М ¹0, а падение напряжения в

каждой секции где XL — индуктивное

сопротивление секции обмотки реактора; k М — коэффициент взаимоиндукции связи

между обмотками секций реактора. Падение напряжения за счёт электромагнитной связи обмоток реактора снижается на 50-60%.

Рис. 5.24 Разделение питания спокойной (1) и резкопеременной (2) нагрузки: а – сдвоенный реактор; б – трансформатор с расщеплённой обмоткой

43 Средства защиты от провалов напряжения

Провал напряжения – это внезапное снижение напряжения ниже 0,9 номинального с последующим его восстановлением до исходного или близкого к нему уровня. Глубина провала, равная 100%, соответствует кратковременному исчезновению напряжения. Длительность провала может составлять от долей секунды до нескольких десятков секунд. Очевидно, все электроприёмники так или иначе восприимчивы к провалам напряжения.

Сети, питающие такие технологические системы, требуют абсолютно бесперебойного электроснабжения. В таких сетях устанавливают источники бесперебойного питания, а при длительном исчезновении напряжения до нескольких десятков минут и более, – дизель-генераторные установки мощностью до нескольких сотен киловатт.

Источник

Встречное регулирование напряжения

Для подробного рассмотрения встречного регулирования напряжения используем схему замещения, показанную на рис.2,а, где трансформатор представлен как два элемента – сопротивление трансформатора и идеальный трансформатор. На рис.2,а, приняты следующие обозначения:

Читайте также:  Газовая труба под напряжением в многоквартирном доме

U1 – напряжение на шинах центра питания;

U – напряжение на шинах первичного напряжения (ВН) районной пс;

U – напряжение на шинах вторичного напряжения (НН) районной пс;

U3 – напряжение у потребителей.

Напряжение на шинах ВН районной пс U=U1-U12

Напряжения на шинах ВН и НН отличаются на величину потерь напряжения в трансформаторе Uт, и, кроме того, в идеальном тр-ре напряжение понижается в соответствии с коэффициентом трансформации, что необходимо учитывать при выборе регулировочного ответвления.

На рис 2,б представлены графики изменения напряжения для двух режимов: наименьших и наибольших нагрузок. При этом по оси ординат отложены значения отклонений напряжения в % номинального. Процентные отклонения имеются в виду для всех V и U на поле этого рисунка.

Из рис.2,б (штриховые линии) видно, что если nТ=1, то в режиме наименьших нагрузок напряжения у потребителей будут выше, а в режиме наибольших нагрузок – ниже допустимого значения (т.е. отклонения U больше допустимых). При этом приемники электроэнергии, присоединенные к сети НН (например, в точках А и В), будут работать в недоступных условиях. Меняя коэффициент тр-ра районной пс nТ, изменяем U, т.е. регулируем напряжение (сплошная линия на рис.2,б).

В режиме наименьших нагрузок уменьшают напряжение U до величины, как можно более близкой к Uном. В этом режиме выбирают такое наибольшее стандартное значение nТ. чтобы выполнялось следующее условие: U2н.нмUном.

В режиме наибольших нагрузок увеличивают напряжение U до величины, наиболее близкой к 1,05 – 1,1Uном. В этом режиме выбирают такое наибольшее стандартное значение nТ, чтобы выполнялось следующее условие:

Таким образом, напряжение на зажимах потребителей, как удаленных от центра питания – в точке В, так и близлежащих – в точке А, вводится в допустимые пределы. При таком регулировании в режимах наибольших и наименьших нагрузок напряжение соответственно повышается и понижается. Поэтому такое регулирование называют встречным.

Баланс активной мощности и его связь с частотой

Особенности электроэнергетических систем состоит в практически мгновенной передачи энергии от источников к потребителям и невозможности накапливания выработанной электроэнергии в заметных количествах. Эти свойства определяют одновременность процесса выработки и потребления энергии.

В каждый момент времени в установившемся режиме системы ее электрические станции должны вырабатывать мощность, равную мощности потребителей, и покрывать потери в сети – должен соблюдаться баланс вырабатываемой и потребляемой мощности: РГ=РП=РН+Р.

где РГ – генерируемая активная мощность станции (за вычетом мощности, расходуемой на собственные нужды);

П – суммарное потребление активной мощности;

Н – суммарная активная мощность нагрузки потребителей;

 — суммарные потери активной мощности.

При неизменном составе нагрузок системы потребляемая или мощность связана с частотой переменного тока. При нарушении исходного баланса частота принимает новое значение. Снижение генерируемой активной мощности приводит к уменьшению частоты, ее возрастание обусловливает рост частоты. Иными словами, при ГП частота понижается, при ГП частота растет. Это станет понятным, если представить систему, состоящую из одного генератора и двигателя, вращающихся с одинаковой частотой. Как только мощность генератора начнет убывать, частота понизиться. Справедливо и обратное, аналогично и в электрической системе, например при ГП турбины начинают разгоняться и вращаться быстрее, f растет.

Причинами нарушения баланса мощности могут быть:

а) аварийное отключение генератора;

б) неожиданный (неплановый, не предусмотренный расчетами) рост потребления мощности, например увеличение потребления мощности электронагревателями в результате сильного снижения температуры;

в) аварийное отключение линий лил трансформаторов связи.

Для пояснения последней причины рассмотрим систему из двух частей, соединенных линией связи. При связанной работе обеих частей соблюдается баланс мощности: Г1+Г2П1+П2

Читайте также:  Сгорела посудомоечная машина после скачка напряжения

Однако в первой части системы генерация больше потребления: Г1П1, а во второй, наоборот, Г2П 2 . Если линия связи аварийно выйдет из строя, обе части системы будут работать изолированно и баланс Р в каждой из них нарушится. В первой частота возрастет, во второй понизиться.

Частота в системе оценивается по показателю отклонения частоты (ГОСТ 13109 – 99).

Отклонение частоты f – это отличие ее фактического значения f от номинального fном в данный момент времени, выраженное в герцах или процентах:

f=f-fном; f%=

Отклонение частоты допускается:

номинальное – в пределах 0,2Гц и предельное – в пределах 0,4Гц.

Приведенные нормы отклонений частоты относятся к номинальному режиму работы энергосистемы и не распространяется на послеаварийный режимы.

В послеаварийных режимах работы электрической сети допускается отклонение частоты от плюс 0,5 Гц до минус 1 Гц общей продолжительностью за год не более 90 ч.

К поддержанию частоты в электрических системах предъявляются повышенные требования, т.к. следствием больших отклонений могут является выход из строя оборудования станций, понижение производительности двигателей, нарушение технологического процесса и брак продукции.

Превышение Г над П, приводящее к росту частоты, можно ликвидировать, уменьшая мощность генераторов или отключая часть из них, тем самым обеспечивая регулирование частоты в энергетической системе. Понижение частоты из-за превышения П над Г требует мобилизации резерва мощности или автоматической частотной разгрузки (АЧР).в противном случае понижение частоты может привести не только к браку продукции у потребителей, но и к повреждению оборудования станций и развалу системы.

Во всех режимах должен быть определенный резерв мощности, реализуемый при соответствующем росте нагрузок. Резерв может быть горячим (генераторы загружаются до мощности меньше номинальной и очень быстро набирают нагрузку при внезапном нарушении баланса Р) и холодным, для ввода которого нужен длительный промежуток времени.

Суммарный необходимый резерв мощности энергосистемы складывается из следующих видов резерва: нагрузочного, ремонтного, аварийного и народнохозяйственного. Нагрузочный резерв служит для покрытия случайных колебаний и непредвиденного увеличения нагрузки сверх учтенной в балансе регулярного максимума нагрузки. Ремонтный резерв должен обеспечивать возможность проведения необходимого планово – предупредительного (текущего и капитального) ремонта оборудования эл.станции. Аварийный резерв предназначен для замены агрегатов, выбывших из работы в результате аварии. Народнохозяйственный резерв служит для покрытия возможного превышения электропотребления против планируемого уровня.

Кроме резерва мощности на электрических станциях системы необходимо резерв по энергии. На ТЭС должен быть обеспечен соответствующий запас топлива, а на ГЭС – запас воды. Если резерв станций исчерпан, а частота в системе не достигла номинального значения, то в действие вступают устройства АЧР, которые предназначены для быстрого восстановления баланса мощности при ее дефиците путем отключения части менее ответственных потребителей. Все потребители электрической энергии по надежности их электроснабжения делятся на три основные категории. В первую очередь АЧР отключает перерывы электроснабжения на время., необходимое для ремонта или замены поврежденного элемента сети, но не более одних суток. В последнюю очередь отключаются наиболее ответственные потребители.

АЧР – дискретная система регулирования, отключающая потребителей степенями (или очередями). При снижении частоты на величину f срабатывает реле частоты, входящее в состав устройства АЧР, и отключает часть потребителей с мощностью .

Система АЧР состоит из комплектов автоматики, установленных на энергетических объектах. В каждом комплекте реле частоты имеет свою уставку по частоте, при которой оно срабатывает и отключает часть линии, питающих потребителей; АЧР отключает потребителей так, чтобы частота не снизилась ниже предельно допустимой по условиям работы технологического оборудования электрических станций величины 46Гц.

Источник

Оцените статью
Adblock
detector