Выделение постоянной составляющей напряжения

Эта непостоянная постоянная составляющая: что делать?

Analog Devices AD822

Владимир Рентюк, Запорожье, Украина

Ситуация, когда в полезном сигнале имеется постоянная составляющая, достаточно обычна. Эта составляющая может быть представлена некоторым фиксированным смещением или иметь нестационарный, плавающий характер. Как правило, она является паразитной и мешает производить обработку полезного переменного сигнала. Таким образом, возникает необходимость ее устранения, и обычно для этого используется разделительный конденсатор. Безусловно, это самое распространенное решение, и сразу вспоминается шутка, которой маститые инженеры вводят в ступор новичков, задавая им простой вопрос: как быстро доказать, что конденсатор проводит переменный ток и не пропускает постоянный. И на все их долгие и пространные объяснения показывают свое (Рисунок 1).

а) б)
Рисунок 1. Конденсатор для напряжения постоянного и
переменного токов. Постоянный ток «уперся»
в конденсатор и дальше пройти не может (а),
а переменный его «обходит» (б).

Если бы все было настолько просто… Но вернемся к сути проблемы. Действительно, первое, что приходит на ум – разделительный конденсатор. И это верно, но не всегда. Если по тем или иным причинам входное сопротивление каскада невелико, а диапазон рабочих частот составляет единицы или десятые доли герц, то потребуются разделительные конденсаторы большой емкости. Как правило, используются электролитические конденсаторы. Но здесь возникают уже совсем иные проблемы. Это габариты и связанная с этим проблема ударо- и вибростойкости, токи утечки, шумы, чувствительность к внешним электромагнитным помехам, необходимость наличия поляризующего напряжения. И не просто, как некоторые думают, любого поляризующего напряжения – лишь бы оно было, что мы часто видим, и не только в радиолюбительской практике. А ведь нужно соблюдать заданное в спецификации соотношение между переменной и постоянной составляющими в области рабочих частот, если вы подходите к процессу проектирования должным образом, а не по принципу «оно же работает». Есть еще такая неприятность, о которой вспоминают, когда устройство уже собрано на плате, как заряд разделительного конденсатора и соответствующий этому переходной процесс. А ведь часто это – весьма ощутимый удар по всей схеме.

Если все изложенное является критичным, то на первый план выходит компенсация постоянной составляющей внешним смещением или задание строго необходимого при наличии некоторой постоянной составляющей в структуре сигнала. Подход хороший, но только если точно известно, какая она (постоянная составляющая) будет, и будет ли она постоянной. Причем, не только во времени, а и, в зависимости от внешних условий, как минимум, от температуры. Если не будет точной компенсации, то в случае, например, измерения среднеквадратичного значения сигнала, будет допущена ошибка. Еще один момент кроется в том, что если аналоговая часть, допустим некоторый масштабирующий усилитель, подключается на вход АЦП микроконтроллера, то для получения максимального динамического диапазона необходимо поднять аналоговый сигнал на величину напряжения, равную половине напряжения питания микроконтроллера или половине максимального номинального напряжения, допустимого для входа его АЦП.

Автору статьи пришлось однажды искать решение для, скажем так, «изделия специального назначения». В нем был блок обработки сигналов с большим динамическим диапазоном, поступающих с некого сенсора через систему сложных, переключаемых в зависимости от ситуации фильтров. Причем спектр этого сигнала достаточно широк, а его низкочастотная составляющая могла лежать в области инфранизких частот. Вычислитель осуществлял контроль среднеквадратичного уровня сигнала и при его отклонении в пределах ±1% выдавал некую очень важную команду. Кроме переменной составляющей, входной сигнал в своей структуре содержал еще и неизвестное по величине и меняющееся по уровню постоянное напряжение смещения. Вдобавок, на печатной плате не было лишнего места, и даже ее высота была ограничена, Ну и, коль это было «изделие специального назначения», то и требования к нему по ударо- и вибростойкости были специальные. Как видим, ни о каких разделительных конденсаторах или о подаче компенсирующего смещения речь даже не могла идти. Схемное решение, которое решило проблему такой необычной компенсации постоянной составляющей исходного сигнала (без разделительного конденсатора) и задания фиксированного и строго определенного смещения, приведено на Рисунке 2. Впервые в общем виде оно было опубликовано в [1].

Читайте также:  Напряжение ddr не активна в биосе gigabyte
Рисунок 2. Схема цепи ультразвукового сенсора, использующая компенсацию
постоянной составляющей входного сигнала [1].

Для предлагаемой схемы желательно использовать операционный усилитель (ОУ) типа «rail-to-rail» по входу и выходу, естественно, допускающий включение в режиме с однополярным источником питания, например, AD822 [2]. Это увеличивает динамический диапазон компенсации постоянной составляющей входного напряжения. Заданная величина выходного смещения, не зависящая от величины постоянной составляющей в структуре сигнала, устанавливается подачей необходимого уровня опорного напряжения VREF. На Рисунке 2 он формируется при помощи построечного резистора R1, но этот резистор может быть заменен источником опорного напряжения или резистивным делителем. (Автором успешно использовались оба варианта). Как уже отмечалось выше, для получения максимального динамического диапазона выходной уровень опорного постоянного напряжения устанавливается равным половине напряжения питания VCC. Усилитель, выполненный на ОУ IC1B, усиливает и инвертирует высокочастотную составляющую напряжения входного сигнала с коэффициентом усиления равным R4/R3, обычным для схем усилителей на базе ОУ в инвертирующем включении.

Инвертирующий вычитающий интегратор, выполненный на ОУ IC1A, обеспечивает компенсацию любого неподходящего для работы схемы напряжения смещения внутри контура отрицательной обратной связи. Переменная составляющая сигнала ослабляется выбором соответствующей постоянной времени интегратора R2C1, оставляя, таким образом, лишь усредненную постоянную составляющую смещения на выходе ОУ IC1B ниже нижней граничной рабочей частоты входного сигнала. Это смещение выходного сигнала в рабочем диапазоне частот будет равно заданному уровню опорного напряжения. На Рисунке 2 показана временная диаграмма действия такой компенсации для случая ступенчатого изменения смещения постоянной составляющей во входном сигнале на величину 4 В. То есть, если учитывать коэффициент усиления схемы, приведенной на Рисунке 2, равный

это будет в условиях очень глубокого перерегулирования, как минимум в 29 дБ! Тем не менее, и это можно видеть из Рисунка 3, время установления предлагаемой схемы с учетом переходных процессов составляет менее 100 мс.

Рисунок 3. Процесс компенсации ступеньки смещения входного
напряжения в 4 В. Время установления менее 100 мс.

Рассмотренное схемотехническое решение имеет еще две дополнительные полезные области применения. Во-первых, это ФВЧ первого порядка без входных емкостей, в котором амплитудно-частотная характеристика имеет спад 6 дБ/октава с частотой среза по уровню –3 дБ. Во-вторых, эта схема также может служить удобным в использовании дифференциатором (инвертирующим и без входного конденсатора) с реакцией на шаг ступенчатого изменения входного напряжения. Как известно, такие дифференциаторы являются потенциально неустойчивыми и, следственно, не очень удобны в применении.

Нижняя частота среза схемы, приведенной на Рисунке 2, определяется по формуле:

(1)

Формула получена в результате моделирования. Для значений элементов, приведенных на Рисунке 2, частота среза в области низких частот равна 47 Гц.

А где же обещанные инфранизкие частоты, спросит читатель? Заменим элементы в интеграторе на R2 = 2 МОм и C1 = 2.2 мкФ и зададим коэффициент усиления, например, равный 12, то есть k = R4/R3 = 12. Это будет соответствовать той задаче, которую решал автор статьи в своем, упомянутом в начале статьи, проекте.

АЧХ такого варианта каскада приведена на Рисунке 4.

Рисунок 4. Амплитудно-частотная характеристика в области
инфранизких частот.

Как видим, все обошлось без нежелательного разделительного электролитического конденсатора. В противном случае пришлось бы использовать электролитический конденсатор емкостью, как минимум, в 470 мкФ и, естественно, схему формирования сдвига выходного напряжения. Приведенное схемное решение было использовано автором в целом ряде проектов и ни разу не имело нареканий.

  1. Vladimir Rentyuk «Use an integrator instead of coupling capacitors», EDN, February 16, 2012
  2. AD822 Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp, Analog Devices Inc., Rev1, 2010
Читайте также:  Инвертор из стабилизатора напряжения своими руками

Источник

Способ определения постоянной составляющей напряжения

Изобретение относится к электроизмерительной технике и может быть использовано при измерительном преобразовании активной и реактивной мощностей, при измерении ортогональных составляющих напряжения и тока. Сущность изобретения: способ определения постоянной составляющей напряжения, представляющего собой сумму постоянной составляющей с составляющей удвоенной промышленной частоты и затухающей составляющей промышленной частоты, заключается в том, что измеряют пять мгновенных значений напряжения через четверть периода промышленного тока, а постоянную составляющую определяют по формуле U0= U1(U4+U5)+U2(U5-U3)-U3(U3+U4)/2(U1-2U3+U5) 1 ил.

Изобретение относится к электроизмерительной технике и может быть использовано, в частности при измерительном преобразовании активной и реактивной мощностей, измерении ортогональных составляющих напряжения и тока.

Известен способ выделения постоянной составляющей Uo напряжения из его суммы с составляющей удвоенной промышленной частоты U(2 )=U1sin(2 t+ 1) ( — промышленная частота, U1 — амплитуда, 1 — начальная фаза) суммированием двух значений напряжения, взятых через полпериода Т= /2 переменной составляющей. Недостатком способа является недопустимо большая погрешность определения постоянной составляющей напряжения U=Uo+U1sin(2 t+ 1) + U2l — t sin( t+2) в виде суммы составляющих Uo,U(2 ) и затухающей гармонической составляющей промышленной частоты U( )=U2l — t -sin( t + 2) с амплитудой U2, коэффициентом затухания и начальной фазой 2.

Целью изобретения является повышение точности выделения постоянной составляющей напряжения из его суммы с составляющей удвоенной промышленной частоты и затухающей гармонической составляющей промышленной частоты. Для этого измеряют пять мгновенных значений напряжения с интервалом, равным четверти периода промышленного тока Т=5 мс и формируют первое, второе, третье произведения умножением сумм четвертого и пятого: третьего и четвертого; разности пятого и третьего на первое, третье и второе мгновенные значения напряжения соответственно и разделив половину суммы первого, второго и разности третьего произведений на сумму первого, пятого и разности удвоенного третьего мгновенного значения напряжения получают постоянную составляющую.

Как показали проведенные нами расчеты, предложенный способ позволяет выделить точные значения постоянной составляющей напряжения и независимо от параметров его составляющих.

В просмотренных источниках информации нами не обнаружены указанные отличительные признаки. Следовательно предложенное решение отвечает критерию существенности отличий.

Устройство, реализующее предложенный способ, может быть выполнено следующим образом (см. чертеж).

Выход аналого-цифрового преобразователя (АЦП) 1 подключен к информационным входам пяти параллельных регистров RG1-RG5 (блок 5), а синхровход АЦП 1 подключен к выходу тактового генератора импульсов (ГИ) 3. Выход ГИ 3 подключен также к входу счетчика импульсов (Сч) 4 и информационному входу демультиплексора (DMS) 5, к адресным входам которого подключены выходы Сч 4. Выходы DMS 5 подключены к синхровходам регистров RGI-RG5. Четвертый, пятый; третий, пятый;третий, четвертый; первый, третий, пятый выходы блока 2 подключены к входам сумматоров (алгебраических) 6, 7, 8, 9 соответственно, а первый, второй, третий выходы блока 2 подключены к входам умножителей 10, 11, 12 соответственно, к вторым входам которых подключены выходы сумматоров 6, 7, 8 соответственно. Выходы умножителей 10, 11, 12 подключены к входам сумматора (алгебраического) 13, выход которого подключен к входу устройства деления 14, второй вход которого подключен к выходу сумматора 9. К выходу устройства деления 14 подключен информационный вход регистра RG15, синхровход которого через элемент задержки 16 подключен к пятому выходу DMS 5.

Устройство реализует предложенный способ следующим образом.

На вход АЦП 1 поступает напряжение U, на синхровход которого поступают первый, второй, третий, четвертый, пятый тактовые импульсы с выхода ГИ 3 и на выходе АЦП 1 появляются в моменты времени t1, t1+ T, t1+2T, t1+3T, t1+4T цифровые значения напряжений U1, U2, U3, U4, U5соответственно поступающие на информационные входы блока 2. С выхода ГИ 3 импульсы также поступают на входы Сч 4 и DMS 5. В зависимости от номера пришедшего тактового импульса Сч 4 устанавливается в соответствующее состояние, что позволяет DMS 5 (в зависимости от информации на его адресных входах) «пропустить» тактовые импульсы на один из пяти своих выходов, которые позволяют записать информацию с выхода АЦП 1 в соответствующие регистры блока 2. За пять последовательных тактов информация будет записана во все пять регистров. С выхода регистров RG1-RG5 до входа регистра 15 информация обрабатывается асинхронно. С выхода блока 2 напряжения U4, U5; U5, U3; U3, U4; U1, U3, U5 поступают на входы сумматоров 6, 7, 8, 9, на выходах которых формируются напряжения U4+U5; U5-U3; U3+U4; 2(U1-2U3+U5) соответственно, причем в сумматоре 9 из напряжения формируется напряжение 2U3 сдвигом его в сторону старшего разряда, а из напряжения U1-2U3+U5 формируется слагающая 2(U1-2U3+U5) также сдвигом этой суммы в сумматоре 9 в сторону старшего разряда. На входы умножителей 10, 11, 12 поступают напряжения U4+U5; U5-U3; U3+U4 с выходов сумматоров 6,7,8 и напряжения U1, U2, U3 с выходов блока 2 соответственно, а с выходов умножителей 10, 11, 12 поступают напряжения U1(U4+U5); U2(U5-U3); U3(U3+U4) соответственно на входы сумматора 13. С выходов сумматоров 9, 13 напряжения 2(U1-2U3+U5), U1(U4+U5)+U2(U5-U3)-U3(U3+U4) соответственно поступают на входы устройства деления 14, с выхода которого напряжение Uo= [U4(U4+U5)+U2(U5-U3)-U3(U3+U4]/[2(U1-2U3+U5)] поступает на вход RG15.

Читайте также:  Регулятор напряжения хонда црв

По окончании переходных процессов в сумматорах, умножителях, устройстве деления полученная информация записывается в RG15 по приходу задержанного импульса (посредством элемента задержки 16) с выхода 5 DMS 5, т.е. в конце цикла. Таким образом раз в цикл информация на выходе RG 15 изменяется.

Предлагаемый способ выделения постоянной составляющей напряжения основан на решении системы уравнений определяющих мгновенные значения напряжения в виде сумы постоянной составляющей, составляющей удвоенной промышленной частоты и затухающей гармонической составляющей промышленной частоты, различающиеся интервалом дискретизации Т=5 мс. Решение системы уравнений (1) относительно постоянной составляющей представляет собой выражение Uo = (2) Очевидно, что выражение (2), являющееся корнем системы уравнений (1), имеет место практически при всех значениях параметров Uo, U1, U2, t1, 1, , 2 напряжения U.

Достоверность соотношения (2) подтверждена расчетами на программируемом микрокалькуляторе МК-61. Так, например, при значениях Uo=1,29 B, U1=2,1 B, U2= 2,7 B, t1= 10 -3 c, = 100 , 1= 2 рад., 2= 7 рад., = 200, Т=5 мс расчет по выражению (2) с использованием (1) позволяет получить Uo=1,29 B, а согласно известному способу при сложении двух значений U1, U2, сдвинутых на полпериода составляющей U(2 ), получается погрешность вычисления Uo, достигающая до 100%.

Вышеприведенное выражение (2) для вычисления постоянной составляющей напряжения в виде суммы Uo с составляющей удвоенной промышленной частоты и затухающей гармонической составляющей промышленной частоты можно использовать, например, при вычислении активной, реактивной мощностей, ортогональных составляющих тока в цепях с электромагнитными переходными процессами.

I ] = (3) I ]= (4) =cst] (5)
=snt]
(6)
где Р,q — мгновенные значения активной и реактивной мощностей; U’ , U » — мгновенные ортогональные значения напряжения; i — мгновенное значение тока; Um, Im — амплитудные значения напряжения и тока; n, i — начальные фазы напряжения и тока; I1 — максимальное значение апериодической составляющей тока; i1, i2 — мгновенные ортогональные значения тока; U1оп, U2оп — опорные гармонические составляющие промышленной частоты.

Из выражений (3)-(5) следует, что они по структуре совпадают с напряжением U и представляют сумму постоянной составляющей (активной P= UmImcos(ni), реактивной Q= UmImsin (ni) мощностей, ортогональных составляющих Im sin i, Imcos iсоответственно), составляющих удвоенной промышленной частоты (вторые слагаемые) и затухающие гармонические составляющие промышленной частоты. Соотношения (5), (6) представляют собой подынтегральные выражения формул Фурье.

СПОСОБ ОПРЕДЕЛЕНИЯ ПОСТОЯННОЙ СОСТАВЛЯЮЩЕЙ НАПРЯЖЕНИЯ, заключающийся в том, что измеряют мгновенные значения напряжения через четверть периода промышленного тока, отличающийся тем, что, с целью повышения точности определения постоянной составляющей напряжения, представляющего собой сумму постоянной составляющей с составляющей удвоенной промышленной частоты и затухающей составляющей промышленной частоты, измеряют пять мгновенных значений напряжения, а постоянную составляющую U0 вычисляют по формуле

где U1 — U5 — измеренные с первого по пятое мгновенные значения.

Источник

Оцените статью
Adblock
detector