Обратная трансформация напряжения что это такое

Содержание
  1. Обратная трансформация трансформатора напряжения что такое
  2. Опасность размыкания вторичной обмотки ТТ
  3. Определение стабильности петли обратной связи с использованием преобразования Лапласа
  4. Обратная трансформация ТМ-6/10кВ
  5. Популярные виды и стоимость трансформаторов
  6. Обратная трансформация
  7. Трансформатор
  8. Содержание
  9. Основные меры безопасности при обслуживании трансформатора напряжения
  10. Компенсация наклона
  11. Введение в несимметричность
  12. Что такое дисбаланс?
  13. Определение
  14. Количественные параметры
  15. Как устроен и работает трансформатор, какие характеристики учитываются при эксплуатации
  16. Конструкция и принцип действия
  17. Замкнутые контуры обратной связи
  18. Классификация
  19. Что такое трансформатор?
  20. Немного исторических фактов
  21. Расшифровка маркировки
  22. Разные виды трансформаторов и их коэффициенты
  23. Схемы подключения
  24. Измерительный трансформатор тока
  25. Технические параметры
  26. Коэффициент трансформации
  27. Класс точности
  28. Энергетические характеристики

Обратная трансформация трансформатора напряжения что такое

Опасность размыкания вторичной обмотки ТТ

В данной статье речь пойдет об опасности размыкания вторичной обмотки трансформаторов тока (ТТ).
Трансформаторы тока предназначены для преобразования первичного тока до наиболее удобных для измерительных приборов и реле значений и отделения цепей измерения и защиты от первичных цепей высокого напряжения.

Трансформатор тока работает при постоянной нагрузке во вторичной цепи и переменной величине тока в первичной обмотке, т.е. при переменном магнитном потоке. Нормальный режим его работы близок к условиям короткого замыкания, так как его вторичная обмотка замкнута на последовательно соединенные обмотки приборов, реле и других аппаратов с незначительным сопротивлением.

Трансформатор тока представляет собой замкнутый магнитопровод 2 (рис.9.35 а) [Л1, с.285-287] и две обмотки. Первичную обмотку 1 включают последовательно в контролируемую цепь (цепь измеряемого тока) I1. Ко вторичной обмотке 3 присоединяют последовательно токовые обмотки приборов и реле, обтекаемые током I2. Тогда коэффициент трансформации равен [Л1, с.286]:

Номинальные вторичные токи равны 5 А и 1 А.

На векторной диаграмме (рис. 9.35 б) показана результирующая магнитнодвижущая сила (МДС) F. В нормально режиме работы она сравнительно невелика, что обусловливает малые значения магнитного потока (Ф) и электродвижущей силы Е2 (ЭДС), наводимой во вторичной обмотке.

При разомкнутой вторичной обмотке ток в ней равен нулю, т.е. I2 = 0, и МДС вторичной обмотки также равна нулю, т.е. F2=I2w2=0. Так как ток в первичной обмотке I1 и ее МДС F1 практически не изменяются, то результирующая МДС F увеличивается во много раз и становится равной F1.

Соответственно увеличивается магнитный поток Ф, величина которого ограничивается лишь насыщением сердечника и индукцией в стали сердечника, при этом за счет повышенных потерь в стали сердечника происходит сильный нагрев магнитопровода, вплоть до пожара.

В результате магнитный поток Ф наведет во вторичной обмотке значительную ЭДС, а напряжение на разомкнутых концах этой обмотки может возрасти с нескольких десятков до тысяч вольт, что, опасно для:

Поэтому при эксплуатации запрещается разрывать вторичную цепь работающего трансформатора тока согласно ПУЭ 7-издание пункт 3.4.16, тем более что это может совпасть с режимом к.з. в первичной обмотке.

Перед отключением прибора от трансформатора тока необходимо предварительно замкнуть накоротко его вторичную обмотку используя испытательные блоки или зашунтировать обмотку реле, прибора и только после этого отъединить прибор.

Нормальным режимом работы ТТ является режим К3 , а режим с разомкнутой вторичной обмоткой (режим холостого хода) — аварийным режимом . Поэтому если ТТ включен и к его вторичной обмотке не подключена нагрузка, то эту обмотку следует обязательно закоротить.

1. Электроснабжение сельского хозяйства. И.А. Будзко, 2000 г.

Определение стабильности петли обратной связи с использованием преобразования Лапласа

Альтернативой экспериментальному методу определения стабильности является математическое вычисление нулей и полюсов. Для этого нам необходимо знать передаточную функцию преобразователя.

Для простого понижающего преобразователя, показанного на рис. 1, передаточная функция равна:

Параметр, обозначенный как s, здесь указывает на то, что переменная передаточной функции имеет частотную зависимость. Передаточная функция может быть решена с помощью преобразования Лапласа, но для того, чтобы понять это преобразование, сначала нужно рассмотреть преобразование Фурье.

Преобразование Фурье — это особая форма преобразования Лапласа. Фурье установил, что любой периодический сигнал является суммой синусоидальных сигналов различной частоты, фазы и амплитуды (ряд Фурье). Преобразование представляет собой переход из временной области в частотную область (и наоборот). Результат преобразования Фурье для периодического сигнала представляет собой эквивалент ряда Фурье, или спектр. На рис. 15 наглядно показаны первые шесть гармоник периодического сигнала прямоугольной формы.

Рис. 15. Графическое представление разложения в ряд Фурье для сигнала прямоугольной формы

Преобразование Фурье является интегралом функции с пределами интегрирования от минус до плюс бесконечности. Это можно записать в виде:

При отображении в S-плоскости переменная преобразования Фурье становится равной s = jω, а результатом будут только мнимые (комплексные) переменные.

Преобразование Лапласа является расширенным вариантом преобразования Фурье. Переменная преобразования Лапласа находится в комплексной плоскости, а интегрирование начинается с нуля, а не с минус бесконечности. При этом функция времени F(t) заменяется ее изображением, как функция от частоты F(s). Это означает, что данное преобразование может быть использовано для анализа ступенчатых или полубесконечных сигналов, таких как импульс или экспоненциальная последовательность с затуханием. Преобразование Лапласа можно записать в виде:

При переходе в S-плоскость переменная преобразования Фурье заменяется на s = σ + jω.

Используя преобразование Лапласа, можно математически смоделировать петлю обратной связи и генерацию нулей и полюсов на S-плоскости диаграммы. Вертикальная ось является мнимой, а горизонтальная ось — действительной. Чем выше или ниже они перемещаются по мнимой оси, тем быстрее возникают колебания. Чем дальше перемещение по отрицательной действительной оси, тем быстрее затухание, а чем далее перемещение по вещественной положительной оси, тем быстрее нарастание, что и поясняет рис. 16.

Рис. 16. График расположения нулей и полюсов в S-плоскости показывает соответствующие типичные временные диаграммы поведения системы

Нули всегда лежат на действительной оси. Комплексно сопряженные пары полюсов в левой половине S-плоскости объединяются так, чтобы сформировать отклик, который является затухающей синусоидальной функцией вида

где А и θ — это начальные условия, σ — скорость затухания, а ω — угловая частота в рад/с.

Пара полюсов, которая лежит на мнимой оси ±jω (без действительного компонента), генерирует колебания с постоянной амплитудой. Расстояние полюса от начала координат указывает на то, как происходит затухание отклика. Чем полюс ближе к началу координат, тем меньше скорость затухания. Если полюс находится на нуле, это означает, что перед нами система постоянного тока.

Если полюс находится в правой полуплоскости, система неустойчива (это соответствует понятию неустойчивости правой полуплоскости — RHP, описанному ранее).


Обратная трансформация ТМ-6/10кВ

FRAER Просмотр профиля
Группа: Пользователи Сообщений: 2778 Регистрация: 11.7.2013 Из: Волгоград Пользователь №: 34281

Группа: Пользователи Сообщений: 2823 Регистрация: 23.6.2013 Из: Минск, Беларусь Пользователь №: 33972

Вопрос заключается в следующем. НЕ ПОГОРИМ? Селективности — нет, да и вообще! был случай обратки, нам в сеть подали с низкой стороны на высокую, так если у нас Uн-11 кВ, то при обратке получили 9кВ и это без нагрузки, а тут предлагают ещё и нагрузку нескольких РТП, ТП подключить.

Очень сильно напрягает распоряжение — Организовать проведение противоаварийных тренировок с условными действиями оперативного персонала на тему: «Организация временного электроснабжения с применением ДЭС» И практических занятий по обеспечению временного электроснабжения с применением метода обратной трансформации с напряжения 0,4 кВ на напряжение 6/10 кВ»

Группа: Пользователи Сообщений: 2823 Регистрация: 23.6.2013 Из: Минск, Беларусь Пользователь №: 33972

Группа: Пользователи Сообщений: 2823 Регистрация: 23.6.2013 Из: Минск, Беларусь Пользователь №: 33972

Популярные виды и стоимость трансформаторов

Бытового потребителя больше интересуют токовые трансформаторы, используемые для подключения электросчётчиков. В продаже предлагаются приборы типов:

Цена зависит от разновидности, конструкции, характеристик и напряжений на котором будет использоваться ТН:

  • 0,66 кВ от 300 – 5000,
  • 6-10 кВ 10000 – 45000,
  • 35 кВ – около 50 000р,
  • 110 кВ и выше – нужно уточнять у производителя.

Обратная трансформация

Трансформатор напряжения – аппарат, который предназначен для понижения высокого напряжения до стандартного значения: 100 В и 100/корень из 3 , которое необходимо для работы устройств защиты и автоматики электрооборудования, учета электрической энергии и подключения измерительных приборов, а также безопасности обслуживающего персонала.

Сопротивление приборов и устройств, подключенных параллельно к трансформатору напряжения, большое, их ток нагрузки небольшой. Из этого можно сделать вывод, что режим работы трансформатора, по сути, близок к режиму холостого хода.

Существует общепринятое диспетчерское наименование аппарата в электроустановках – ТН, в зависимости от рабочего напряжения: ТН-10кВ, ТН-35кВ, ТН-110кВ и т.п. Первичная обмотка ТН-6кВ и ТН-35кВ подключаются в сеть через высоковольтные предохранители. ТН-110кВ, как правило, подключается к сети без предохранителей, так как повреждение данных аппаратов происходит достаточно редко.

Читайте также:  Как уменьшить напряжение адаптера

Для защиты вторичной обмотки ТН всех классов напряжения от короткого замыкания устанавливают предохранитель или автоматический выключатель. Последний применяют в том случае, если цепи напряжения ТН подключены к быстродействующим защитам электрооборудования.

Трансформатор

Содержание

  1. Трансформатор напряжения
  2. Обмотки трансформатора
  3. Как работает трансформатор
  4. Формула трансформатора
  5. Типы трансформаторов по конструкции
  6. Однофазные трансформаторы
  7. Трехфазные трансформаторы
  8. Типы трансформаторов по напряжению
  9. Понижающий трансформатор
  10. Повышающий трансформатор
  11. Разделительный или развязывающий трансформатор
  12. Согласующий трансформатор
  13. Работа понижающего трансформатора на практике
  14. Как проверить трансформатор
  15. Как проверить на короткое замыкание обмоток
  16. Проверка на обрыв обмоток

Слово “ трансформатор” образуется от английского слова “transform” – преобразовывать, изменяться. Но дело в том, что сам трансформатор не может как-либо измениться либо поменять форму и так далее. Он обладает еще более удивительный свойством – преобразует переменное напряжение одного значения в переменное напряжение другого значения. Ну разве это не чудо? В этой статье мы будем рассматривать именно трансформаторы напряжения.

Основные меры безопасности при обслуживании трансформатора напряжения

Для обеспечения безопасности обслуживающего персонала от попадания высокого напряжения первичной обмотки на вторичную, одна из вторичных обмоток заземляется.

Для проведения плановых или аварийных ремонтов трансформатора напряжения необходимо вывести в его в ремонт, то есть отключить и заземлить. При выводе ТН в ремонт следует создать видимый разрыв по стороне высшего напряжения – отключением разъединителя или снятием высоковольтных предохранителей, а также по стороне низкого напряжения снятием низковольтных предохранителей или испытательных блоков, а при их отсутствии отсоединением и закорачиванием выводов вторичных обмоток. Создание видимого разрыва по стороне низкого напряжения необходимо для предотвращения обратной трансформации, то есть появления напряжения на первичной обмотке от напряжения на вторичной обмотки при ошибочном объединении вторичных цепей от другого ТН, находящегося в работе.

Компенсация наклона

Еще одной возможной причиной нестабильности петли обратной связи является субгармоническая бифуркация, или нестабильность, вызванная раздваиванием. Основная причина такой нестабильности — ШИМ-компаратор, который сравнивает уровень напряжения обратной связи с возрастающим пилообразным напряжением. Для того чтобы разобраться, обратимся к блок-схеме, приведенной на рис. 11.

Рис. 11. Блок-схема ШИМ-контроллера, работающего в режиме управления по напряжению (Voltage Mode Control)

Проблема здесь может возникнуть по той причине, что с каждым циклом переключения энергия в дросселе не исчезает полностью, так что ток, когда это не нужно, течет обратно в цепь обратной связи. Кроме того, это может быть просто переключением компаратора из-за наличия помех на его входе. Эффект аналогичен тому, как если бы ШИМ-модулятор формировал раздвоенный (это и есть бифуркация), или двойной, импульс.

Рис. 12. Временная диаграмма, иллюстрирующая субгармоническую нестабильность

Решение проблемы субгармонической неустойчивости называется компенсацией крутизны, или наклона (англ. Slope Compensation) (рис. 12). Такая компенсация заключается в том, чтобы добавить искусственный пилообразный сигнала (как правило, для этого используется спадающий ток дросселя, а иногда сигнал для компенсации берется непосредственно от напряжения на частотозадающем конденсаторе). Для того чтобы избежать ложных срабатываний или повторного запуска ШИМ-компаратора, это напряжение добавляется непосредственно к напряжению обратной связи (рис. 13).

Рис. 13. Компенсация наклона (пунктирная линия) и сигнал обратной связи (сплошная линия)

Введение в несимметричность

Несбалансированные токи являются важнейшей причиной несимметричного напряжения, а поскольку оно относится к важным параметрам качества энергоснабжения, в данной статье будут рассматриваться несимметричные синусоидальные напряжения.

Johan Driesen, Katholieke Universiteit Leuven

Thierry Van Craenenbroeck, Katholieke Universiteit Leuven

Несбалансированные токи являются важнейшей причиной несимметричного напряжения, а поскольку оно относится к важным параметрам качества энергоснабжения, в данной статье будут рассматриваться несимметричные синусоидальные напряжения.

Что такое дисбаланс?

Определение

Трехфазная система считается сбалансированной или симметричной, когда напряжения и токи каждой из фаз имеют одинаковую амплитуду, а сдвиг амплитуды по фазе равен 1200. Если не выполняется хотя бы одно из этих условий, то система считается асимметричной, или разбалансированной.

В статье условно полагается, что гармоники отсутствуют, т. е. форма кривых напряжения синусоидальная.

Количественные параметры

Для того чтобы количественно описать дисбаланс напряжения или тока в трехфазной системе, применяются так называемые компоненты Фортескью, или симметричные компоненты. Трехфазную систему условно разбивают на прямую или положительную, обратную или отрицательную, и униполярную или нуль-последовательности, обозначаемые индексами d, i, h (в некоторых источниках – 1, 2, 0). Их используют для расчетов при помощи трансформации матрицы трехфазного напряжения или тока. Индексы u, v, w (иногда a, b, c) означают разные фазы. Приведенное ниже выражение для напряжения U равноприменимо и для тока I с соответствующими значениями переменных величин

Как устроен и работает трансформатор, какие характеристики учитываются при эксплуатации

В энергетике, электронике и других отраслях прикладной электротехники большая роль отводится преобразованиям электромагнитной энергии из одного вида в другой. Этим вопросом занимаются многочисленные трансформаторные устройства, которые создаются под различные производственные задачи.
Одни из них, имеющие наиболее сложную конструкцию, выполняют трансформацию мощных потоков высоковольтной энергии, например. 500 или 750 киловольт в 330 и 110 кВ или в обратном направлении.

Другие работают в составе малогабаритных устройств бытовой техники, электронных приборов, системах автоматизации. Они также широко используются в различных блоках питания мобильных устройств.

Трансформаторы работают только в цепях переменного напряжения разной частоты и не предназначены для применения в схемах постоянного тока, в которых используются преобразователи других типов.

Трансформаторы делятся на две основные группы: однофазные, питающиеся от сети однофазного переменного тока, и трехфазные, питающиеся от сети трехфазного переменного тока.

Трансформаторы очень различны по своей конструкции. Основными элементами трансформатора являются: замкнутый стальной сердечник (магнитопровод), обмотки и детали, служащие для крепления магнитопровода и катушек с обмотками и установки трансформатора в выпрямительное устройство. Матнитопровод предназначен для создания замкнутого пути для магнитного потока.

Части магннтопровода, на которых размещены обмотки, называются стержнями, а части, на которых отсутствуют обмотки и которые служат для замыкания: магнитного потока в магнитопроводе — ярмом. Материалом для магнитопровода трансформатора служит листовая электротехническая сталь (трансформаторная сталь). Эта сталь бывает различных марок, толщины, горячей и холодной прокатки.

Общие принципы работы трансформаторов

Мы знаем, что электромагнитная энергия неразрывна. Но ее принято представлять двумя составляющими:

Так проще понимать происходящие явления, описывать процессы, делать расчеты, конструировать различные устройства и схемы. Целые разделы электротехники посвящены раздельным анализам работы электрических и магнитных цепей.

Электрический ток, как и магнитный поток, протекает только по замкнутой цепи, обладающей сопротивлением (электрическим или магнитным). Его создают внешние приложенные силы — источники напряжения соответствующих энергий.

Однако, при рассмотрении принципов работы трансформаторных устройств придётся одновременно исследовать оба этих фактора, учесть их комплексное воздействие на преобразование мощности.

Простейший трансформатор состоит из двух обмоток, выполненных намоткой витками изолированной проволоки, по которым протекает электрический ток и одной магистрали для магнитного потока. Ее принято называть сердечником или магнитопроводом.

К вводу одной обмотки приложено напряжение от источника электроэнергии U1, а с выводов второй оно, после преобразования в U2, подается на подключенную нагрузку R.

Под действием напряжения U1 в первой обмотке по замкнутой цепи протекает ток I1, величина которого зависит от полного сопротивления Z, состоящего из двух составляющих:

1. активного сопротивления проводов обмотки;

2. реактивной составляющей, обладающей индуктивным характером.

Величина индуктивного сопротивления оказывает большое влияние на работу трансформатора.

Протекающая по первичной обмотки электрическая энергия в виде тока I1 представляет собой часть электромагнитной, магнитное поле которой направлено перпендикулярно движению зарядов или расположению витков проволоки. В его плоскости размещен сердечник трансформатора — магнитопровод, по которому замыкается магнитный поток Ф.

Все это наглядно отражено на картинке и строго соблюдается при изготовлении. Сам магнитопровод тоже замкнут, хотя в отдельных целях, например, для снижения магнитного потока в нем могут делать зазоры, увеличивающие его магнитное сопротивление.

За счет протекания первичного тока по обмотке магнитная составляющая электромагнитного поля проникает в магнитопровод и циркулирует по нему, пересекая витки вторичной обмотки, которая замкнута на выходное сопротивление R.

Под действием магнитного потока во вторичной обмотке наводится электрический ток I2. На его величине сказывается значение приложенной напряженности магнитной составляющей и полной сопротивление цепи, включая подключенную нагрузку R.

При работе трансформатора внутри магнитопровода создается общий магнитный поток Ф и его составные части Ф1 и Ф2.

Как устроен и работает автотрансформатор

Среди трансформаторных устройств особой популярностью пользуются упрощенные конструкции, использующие в работе не две разные отдельно выполненные обмотки, а одну общую, разделенную на секции. Их называют автотрансформаторами.

Принцип работы такой схемы практически остался прежним: происходит преобразование входной электромагнитной энергии в выходную. По виткам обмотки W1 протекают первичные токи I1, а по W2 — вторичные I2. Магнитопровод обеспечивает путь движения для магнитного потока Ф.

Читайте также:  Электромясорубка производственная с производительностью 300кг час потребляемое напряжение 320в

У автотрансформатора имеется гальванически связь между входными и выходными цепями. Так как преобразованию подвергается не вся приложенная мощность источника, а только часть ее, то создается более высокий КПД, чем у обычного трансформатора.

Такие конструкции позволяют экономить на материалах: стали для магнитопровода, меди для обмоток. Они обладают меньшим весом и стоимостью. Поэтому их эффективно используют в системе энергетики от 110 кВ и выше.

Особых отличий в режимах работы трансформатора и автотрансформатора практически нет.

Рабочие режимы трансформатора

При эксплуатации любой трансформатор может находиться в одном из состояний:

Холостой ход трансформатора

Холостой ход — работа прибора, машины и т. п. без нагрузки, вхолостую. При холостом ходе приборы, машины не отдают мощности, но сами при этом обычно потребляют ту или иную мощность.

Например, трансформатор, работающий без нагрузки (с разомкнутой вторичной обмоткой), потребляет некоторый ток из сети (т. н. холостой ток трансформатора), и этот ток, текущий в первичной обмотке, связан с потреблением некоторой мощности из сети, которая идет на нагрев обмотки (а в случае наличия потерь в стали и на нагрев сердечника) трансформатора.

Режим вывода из работы

Для его создания достаточно снять питающее напряжение источника электроэнергии с первичной обмотки и этим исключить прохождение электрического тока по ней, что и делают всегда в обязательном порядке с подобными устройствами.

Однако на практике при работе со сложными трансформаторными конструкциями такая мера не обеспечивает полностью меры безопасности: на обмотках может оставаться напряжение и приносить вред оборудованию, подвергать опасности обслуживающий персонал за счет случайного воздействия разрядов тока.

Как это может произойти?

У малогабаритных трансформаторов, которые работают в качестве блока питания, как показано на верхней фотографии, постороннее напряжение никакого вреда не причинит. Ему там просто неоткуда взяться. А на энергетическом оборудовании его обязательно следует учитывать. Разберём две часто встречающиеся причины:

1. подключение постороннего источника электроэнергии;

2. действие наведенного напряжения.

Первый вариант

На сложных трансформаторах работает не одна, а несколько обмоток, которые используются в разных цепях. Со всех их необходимо отключать напряжение.

Кроме того, на подстанциях, эксплуатируемой в автоматическом режиме без постоянного оперативного персонала к шинам силовых трансформаторов подключают дополнительные трансформаторы, обеспечивающие собственные нужды подстанции электроэнергией 0,4 кВ. Они предназначены для питания защит, устройств автоматики, освещения, отопления и других целей.

Их так и называют — ТСН или трансформаторы собственных нужд. Если со входа силового трансформатора снято напряжение и его вторичные цепи разомкнуты, а на ТСН проводятся работы, то существует вероятность обратной трансформации, когда напряжение 220 вольт с низкой стороны проникнет на высокую по подключенным шинам питания. Поэтому их необходимо обязательно отключать.

Действие наведенного напряжения

Если около шин отключенного трансформатора проходит высоковольтная линия, находящаяся под напряжением, то токи, протекающие по ней, способны наводить напряжение на шинах. Необходимо применять меры для его снятия.

Конструкция и принцип действия

Внешний вид типичного трансформатора тока представлен на рисунке 1. Характерным признаком этих моделей является наличие у них диэлектрического корпуса. Формы корпусов могут быть разными – от прямоугольных до цилиндрических. В некоторых конструкциях отсутствуют проходные шины в центре корпуса. Вместо них проделано отверстие для обхвата провода, который выполняет функции первичной обмотки.

Материалы диэлектриков выбирают в зависимости от величины напряжений, для которых предназначено устройство и от условий его эксплуатации. Для обслуживания промышленных энергетических систем изготавливают мощные ТТ с керамическими корпусами цилиндрической формы (см. рис. 2).

Рис. 2. Промышленный керамический трансформатор тока

Особенностью трансформатора является обязательное наличие нагрузочного элемента (сопротивления) во вторичной обмотке (см. рис. 3). Резистор необходим для того, чтобы не допускать работы в режиме без вторичных нагрузок. Функционирование трансформатор тока с ненагруженными вторичными обмотками недопустимо из-за сильного нагревания (вплоть до разрушения) магнитопровода.

Рис. 3. Принципиальная схема трансформатора тока

Замкнутые контуры обратной связи

Зависимость уровня выходного напряжения от величины входного напряжения может быть наиболее эффективно устранена с помощью введения регулирующей петли обратной связи. В общем представлении сигнал обратной связи подается на усилитель ошибки, который сравнивает фактический уровень выходного напряжения (как правило, уменьшенный делителем) с неким опорным значением (его формирует высокостабильный источник напряжения) и корректирует выходное напряжение так, чтобы привести его в заданное соответствие. Поскольку коррекция всегда работает в противофазе по отношению к отклонению (если выходное напряжение слишком высоко, то действие направлено на его уменьшение, а если оно слишком низко, то на его увеличение), такая обратная связь называется негативной, или отрицательной. Если же петля обратной связи окажется позитивной, или положительной, то любые ошибки будут усиливаться и выходное напряжение либо будет пульсировать, либо быстро перейдет к возможному для нее минимальному или максимальному уровню. Обеспечение такого режима, при котором во время переходных процессов условия для положительной обратной связи никогда бы не возникали, является одним из самых сложных аспектов разработки петли регулирующей обратной связи.

Совершенством обратной связи является тот факт, что в выходном напряжении будут компенсированы как все изменения входного напряжения, так и любые изменения, вызванные изменением нагрузки на преобразователь. Для обоих моментов используется одна и та же корректирующая петля обратной связи. Еще одно преимущество замкнутых контуров обратной связи заключается в том, что вход и выход не обязательно должны иметь одни и те же физические величины для регулирования. Так, контур обратной связи может быть использован для обеспечения постоянного тока на выходе от источника непостоянного по уровню входного напряжения. В этом случае усилитель ошибки в соответствии с сигналом обратной связи просто регулирует выходную мощность. Подобная регулировка выполняется на основании выходного тока, а не уровня выходного напряжения. В действительности в этом случае преобразователь становится транскондуктивным усилителем (то есть усилителем тока, управляемым напряжением) вместо обычного усилителя напряжения. Но в общем случае значение тока все равно переводится в пропорциональный току уровень напряжения, так что в любом случае сравниваются напряжения.

Для анализа схемной реализации петли обратной связи возьмем в качестве примера простой неизолированный понижающий стабилизатор напряжения. Его типичная электрическая принципиальная схема может быть следующей (рис. 2).

Рис. 2. Упрощенная схема понижающего преобразователя с функцией стабилизации напряжения

С точки зрения функциональных блоков рис. 2 может быть преобразован до следующей функциональной схемы, представленной на рис. 3.

Рис. 3. Блок-схема петли обратной связи

Каждый функциональный блок будет иметь собственный коэффициент передачи (усиления) К. Силовой ключ (как правило, полевой транзистор) будет иметь усиление KPWR, выходной фильтр, выполненный на индуктивности L1 и конденсаторе C1, будет иметь коэффициент усиления KFILT(S), элемент обратной связи (резистивный делитель, образован резисторами R1 и R2) будет иметь усиление KFB. Хотя мы все время говорим про коэффициент усиления, не будем забывать, что он может быть и менее единицы, то есть показывать ослабление, а не усиление сигнала. Полученный в результате сигнал обратной связи сравнивается с опорным напряжением VREF в точке суммирования, а ошибка суммирования усиливается усилителем ошибки A1 с коэффициентом усиления KEA(S). Выходное напряжение усилителя ошибки используется для управления ШИМ-модулятором (основа любого DC/DC-преобразователя), в свою очередь имеющим коэффициент усиления KMOD. Некоторые из этих усилительных блоков будут иметь большое усиление, а некоторые из них, наоборот, ослаблять сигнал, но общий коэффициент усиления разомкнутой петли обратной связи, или, как ее еще называют, контура (суммарное усиление), положительный и, как правило, составляет около 1000.

Коэффициент усиления при разомкнутой цепи обратной связи:

Простая схема, показанная на рис. 2, будет иметь резонанс (полюс), вызванный наличием выходного LC-фильтра. Частота этого резонанса определяется как:

Дополнительный резонанс (нуль), вызванный наличием эквивалентного последовательного сопротивления ESR (англ. ESR — Equivalent Series Resistance) конденсатора, определяется как:

На частотах выше fPO, коэффициент усиления уменьшается со скоростью –40 дБ/декада. Это связано с амплитудно-частотной характеристикой (АЧХ) выходного LC-фильтра, который представляет собой фильтр второго порядка. Точка fC, в которой АЧХ достигает единицы (усиление равно 0 дБ), является частотой излома, или, как ее еще иногда называют, частотой перехода. На частоте fZO эффект фильтра первого порядка обеспечивает RC-фильтр, образованный ESR конденсатора фильтра, он изменяет крутизну АЧХ усиления на –20 дБ/декада. График нормированного коэффициента усиления от частоты показывает, что и крутизна АЧХ, и изменение фазы (фазо-частотная характеристика, ФЧХ) контура обратной связи зависят от частоты.

ФЧХ претерпевает дополнительное изменение на 180°, вызванное подключением цепи обратной связи к инвертирующему входу усилителя ошибки A1.

Читайте также:  Распределительные устройства для электростанций генераторного напряжения

Рис. 4. Нормированная диаграмма зависимости усиления и фазы от частоты для схемы преобразователя, приведенной на рис. 2

Как видно из фазовой диаграммы, схема неустойчива на частоте перехода, поскольку изменение фазы здесь составляет –180° или –360°, если учитывать в целом. Это заставит преобразователь войти в область положительной обратной связи, и на его выходе появятся затухающие высокочастотные колебания, которые на техническом жаргоне называются «звон», или при определенных условиях может начаться даже паразитный незатухающий автоколебательный процесс.

При увеличении коэффициента усиления в каскаде усилителя ошибки частота, на которой результирующий коэффициент усиления равен 1, может быть смещена в более безопасную область. Запас по фазе (а это разница между результирующей общей фазой и фазой в –180° на системной частоте fC) и запас по усилению (это усиление системы в точке фазы, равной –180°) определяют, насколько стабильна петля обратной связи (рис. 5).

Рис. 5. Запас по усилению и фазе

Классификация

Семейство трансформаторов тока классифицируют по нескольким признакам.

  1. По назначению:
      защитные;
  2. линейки измерительных трансформаторов тока;
  3. промежуточные (используются для выравнивания токов в системах дифференциальных защит);
  4. лабораторные.
  5. По способу монтажа:
      наружные (см. рис. 8), применяются в ОРУ;
  6. внутренние (размещаются в ЗРУ);
  7. встраиваемые;
  8. накладные (часто совмещаются с проходными изоляторами);
  9. переносные.

Рис. 8. Пример наружного использования ТТ

  • Классификация по типу первичной обмотки: многовитковые, к которым принадлежат катушечные конструкции, и трансформаторы, с обмотками в виде петель;
  • одновитковые;
  • шинные.
  • По величине номинальных напряжений:
      До 1 кВ;
    • Свыше 1 кВ.

    Трансформаторы тока можно классифицировать и по другим признакам, например, по типу изоляции или по количеству ступеней трансформации.

    Что такое трансформатор?

    Если коротко, то это стационарное устройство, используемое для преобразования переменного напряжения с сохранением частоты тока. Действие трансформатора основано на свойствах электромагнитной индукции.

    Немного исторических фактов

    В основу действия трансформатора легло явление магнитной индукции, открытое М. Фарадеем в 1831 г. Физик, работая с постоянным электрическим током, заметил отклонение стрелки гальванометра, подключенного к одной из двух катушек, намотанных на сердечник. Причем гальванометр реагировал только в моменты коммутации первой катушки.

    Поскольку опыты проводились от источника постоянного тока, Фарадей не смог объяснить открытое явление.

    Прообраз трансформатора появился лишь в 1848 году. Его изобрел немецкий механик Г. Румкорф, называя устройство индукционной катушкой особой конструкции. Однако Румкорф не заметил трансформации выходных напряжений.Датой рождения первого трансформатора считается день выдачи патента П. Н. Яблочкову на изобретение устройства с разомкнутым сердечником. Это случилось 30.11.1876 года.

    Расшифровка маркировки

    Каждому типу трансформаторов присваиваются буквенно-цифровые символы, по которым можно определить его основные параметры:

    • Т — трансформатор тока;
    • П — буква указывающая на то, что перед нами проходной трансформатор. Отсутствие буквы П указывает, что устройство принадлежит к классу опорных ТТ;
    • В — указывает на то, что трансформатор встроен в конструкцию масляного выключателя или в механизм другого устройства;
    • ВТ — встроенный в конструкцию силового трансформатора;
    • Л— со смоляной (литой) изоляцией;
    • ФЗ — устройство в фарфоровом корпусе. Звеньевой тип первичной обмотки;
    • Ф — с надежной фарфоровой изоляцией;
    • Ш — шинный;
    • О — одновитковый;
    • М — малогабаритный;
    • К — катушечный;
    • 3 — применяется для защиты от последствий замыкания на землю;
    • У — усиленный;
    • Н — для наружного монтажа;
    • Р — с сердечником, предназначенным для релейной защиты;
    • Д — со вторичной катушкой, предназначенной для питания электричеством дифференциальных устройств защиты;
    • М — маслонаполненный. Применяется для наружной установки.
    1. Номинальное напряжение (в кВ) указывается после буквенных символов (первая цифра).
    2. Числами через дробь обозначаются классы точности сердечников. Некоторые производители вместо цифр проставляют буквы Р или Д.
    3. следующие две цифры «через дробь» указывают на параметры первичного и вторичного токов;
    4. после позиции дробных символов — код варианта конструкционного исполнения;
    5. буквы, расположенные после кода конструкционного варианта, обозначают тип климатического исполнения;
    6. цифра на последней позиции — категория размещения.

    Разные виды трансформаторов и их коэффициенты

    Хотя конструктивно преобразователи мало чем отличаются друг от друга, назначение их достаточно обширно. Существуют следующие виды трансформаторов, кроме рассмотренных:

    • силовой;
    • автотрансформатор;
    • импульсный;
    • сварочный;
    • разделительный;
    • согласующий;
    • пик-трансформатор;
    • сдвоенный дроссель;
    • трансфлюксор;
    • вращающийся;
    • воздушный и масляный;
    • трехфазный.

    Особенностью автотрансформатора является отсутствие гальванической развязки, первичная и вторичная обмотка выполнены одним проводом, причем вторичная является частью первичной. Импульсный масштабирует короткие импульсные сигналы прямоугольной формы. Сварочный работает в режиме короткого замыкания. Разделительные используются там, где нужна особая безопасность по электротехнике: влажные помещения, помещения с большим количеством изделий из металла и подобное. Их k в основном равен 1.

    Пик-трансформатор преобразует синусоидальное напряжение в импульсное. Сдвоенный дроссель — это две сдвоенные катушки, но по своим конструктивным особенностям относится к трансформаторам. Трансфлюксор содержит сердечник из магнитопровода, обладающего большой величиной остаточной намагниченности, что позволяет использовать его в качестве памяти. Вращающийся передает сигналы на вращающиеся объекты.

    Воздушные и масляные трансформаторы отличаются способом охлаждения. Масляные применяются для масштабирования большой мощности. Трехфазные используются в трехфазной цепи.

    Более подробную информацию можно узнать о коэффициенте трансформации трансформатора тока в таблице.

    Схемы подключения

    Первичные катушки трансформаторов тока включаются в цепь последовательно. Вторичные катушки предназначены для подключения измерительных приборов или используются системами релейной защиты.

    Во вторичную цепь включаются выводы измерительных приборов и устройства релейной защиты. С целью обеспечения безопасности, сердечник магнитопровода и один из зажимов вторичной катушки должны заземляться.

    При подключении трехфазных счетчиков, в сетях с изолированной нейтралью обмотки трансформатора соединяются по схеме «Неполная звезда». При наличии нулевого провода применяется схема полной звезды.

    Выводы трансформаторов маркируются. Для первичной обмотки применяются обозначения Л1 и Л2, а для вторичной – И1 и И2. При подключении измерительных приборов следует соблюдать полярность обмоток.

    Схема «неполная звезда» применяется для двухфазного соединения.

    В дифференциальных защитах, используемых в силовых трансформаторах, обмотки включаются треугольником.

    Основные схемы подключения:


    Основные схемы подключения

    • В сетях с глухозаземленной нейтралью ТТ подключается к каждой фазе. Соединение обмоток трансформатора – полная звезда.
    • Подключение по схеме неполной звезды. Применяется в сетях с изолированными нулевыми точками.
    • Схема восьмерки. Симметрично распределяет нагрузки при трехфазном КЗ.
    • Соединение ТТ в фильтр токов нулевой последовательности. Применяется для защиты номинальной нагрузки от коротких замыканиях на землю.

    Измерительный трансформатор тока

    Трансформатором тока(ТН, TV) – называют электротехническое устройство, изменяющее величину выходного значения электротока в процессе передачи с первичной на вторичную обмотку. В результате пропуска через трансформатор, электрический ток передаётся из одной системы в другую, пропорционально изменяясь, в зависимости от поставленной задачи.

    Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

    1. Особенности конструкции и принцип работы
    2. Виды трансформаторов тока
    3. Расшифровка маркировки
    4. Технические параметры
    5. Схемы подключения трансформаторов тока
    6. Силового оборудования
    7. Вторичные цепи
    8. Популярные виды и стоимость трансформаторов
    9. Возможные неисправности

    Технические параметры

    Очень важной характеристикой трансформатора тока является класс точности. Этот параметр характеризует погрешность измерения, то есть показывает, на сколько номинальный (идеальный) коэффициент трансформации отличается от реального.

    Коэффициент трансформации

    Так как в реальном коэффициенте трансформации присутствует синфазная и квадратурная составляющая, то значения коэффициента всегда отличаются от номинального. Разницу (погрешность) необходимо учитывать при измерениях. На результаты измерений влияют также угловые погрешности.

    У всех ТТ погрешность отрицательна, так как у них всегда присутствуют потери от намагничивания и нагревания токовых катушек. С целью устранения отрицательного знака погрешности, для смещения параметров трансформации в положительную сторону, применяют витковую коррекцию. Поэтому в откорректированных устройствах привычная формула для вычислений не работает. Поэтому коэффициенты трансформации в таких аппаратах производители определяют опытным путем и указывают их в техпаспорте.

    Класс точности

    Токовые погрешности искажают точность измерения электрического тока. Поэтому для измерительных трансформаторов высокие требования к классу точности:

    Трансформатор может находиться в пределах заявленного класса точности, только если сопротивление максимальной нагрузки не превышает номинального, а ток в первичной цепи не выходит за пределы 0,05 – 1,2 величины номинального тока трансформатора.

    Энергетические характеристики

    Если рассматривать принципиальную схему устройства, то видно, что происходят спады и увеличения в линейном соотношении. Именно качеством и продолжительностью импульсов определяются характеристики выходного напряжения. Проводится модуляция для цепей обратной связи. Энергетические показатели трансформатора такого типа индивидуальны в каждом конкретном случае, но всегда устанавливаются ограничители, ведь прибор работает на максимальной мощности.

    В результате этого микросхемы перестают обрабатывать импульсы. Создаются помехи и шумы, которые значительно влияют в негативную сторону на ход работы. Используется специальные модуляторы, которые сокращают энергетические потери импульсного трансформатора.

    Источник

  • Оцените статью
    Adblock
    detector